
The independent magazine for Amstrad computer users
Registered by Australia Post - Publication No. VBP7811

December, 1986

$3.60
A Database Publication

Robot B

Monsters *
By STEPHEN MARTIN

First Steps
Sound
CP/M
Public Domain

Basic for beginners
Learn all about the pitch envelope
CCP keywords
All about communications

Two new series start this month featuring Graphics
and Machine Code - we'll make it easy to learn!

Robot Ron meets the Ice Monsters
Santa's Grotty
Word Count for Locoscript
Archiver - back up those disks!
Rem Strip - reclaim your memory
Full Forth listing
Reaction Timer - test your speed!

^.nd imts mors so ¿¡si in now^

TASWORD 464 - THE WORD PROCESSOR

WE HAVE ONLY TWENTY LEFT AND ARE SELLING THESE AT
ONLY $29.95 ON TAPE AND $41.95 ON DISK. MANUAL IS

COMPLETE WITH ADDENDUM TO ENABLE TRANSFER TO DISK.
HURRY! THESE WON'T LAST.

TASWORD
464

The Word Processor

A
Tasman Software Program

for the
Amstrad CPC 464

(002) 29-4377

trategy

oftware P.O. BOX 11, BLACKMANS BAY, TASMANIA 7152

2 Computing With The Amstrad - December 1986

ALL ^WmLES A?SPECIAL PRICES

NEW AMSTRAD TITLES
AVAILABLE ONLY FROM
STRATEGY SOFTWARE

4. DRUMKIT
TAPE ONLY $16.95

8. AMSTRAD POT-POURRI
VOLUME 2

TAPE $ N/A
DISK $19.95

1. GENESIS ADVENTURE
CREATOR

DISK ONLY $39.95

Don't pay more! Genesis offers
a complete system for writing
Text/Graphic adventures with
Music and Sound Effects.
Features include: Text
Compression, synonyms for
commands and objects,
sentence analyser, multiple
graphic windows, variable
screen modes, extensive
graphic commands and storage
of text and graphics on disk for
large, disk-based adventures.
Ideal for the novice wishing to
create his/her own adventures.
Used by commercial software
houses in the U.K.

Percussion Instrument
Simulator with eleven standard
percussion sounds plus three
user-defined sounds. Uses the
Amstrad sound chip, no extra
hardware required.

5. CHAOS FACTOR

TAPE $15.95
DISK $27.95

A graphic adventure game,
featuring Nurd Fungus and
Narsty & Crutch, the amazing
cops who can solve any crime
simply by saying 'Hi' a lot! Don't
miss it!

25 more previously un-released software on
the same basis as Volume 1 .Volume 2 includes
a great machine-code Space Invaders.

EXTRA SPECIAL!!!

Buy both Volumes 1 & 2 and receive,
absolutely free, a tape copier and tape to disk
utility. Please note that these programs cannot
be guaranteed to work with all tapes.

CALL [002] 29 4377
NOW!

2. GRASP PLUS
DISK ONLY $29.95

All the features of Grasp, plus
hi-res (mode 2) screen plots,
improved labelling, various
printer options, faster screen
dumps, exploded pie charts and
all the advantages of disk
operation.

3. MUSICO
TAPE ONLY $17.95

An easy to use system for
creating 3 part music and
sound effects. Results may be
used in your own programs.

6. EASY MUSIC
DISK ONLY $34.95

A combination of MUSICO and
DRUMKIT (see above) together
with the advantage of disk
operation.

7. AMSTRAD

TAPE
DISK

POT-POURRI
VOLUME 1

$ N/A
$ 19.95

25 great games for your
Amstrad. Fantastic value for
money at less than 40 c per
program on tape. Volume 1 has
a full-length text adventure
which alone is worth the
money!

Computing With The Amstrad - December 1986 3

Computing
With
The
Amstrad

Contents

December 1986
^eMm

Published monthly by Strategy
Software under license from
Database Publications Limited.

Telephone: [002] 29 4377
Telex: AA58134 (Attn. HT163)

Mail: P.O. Box 11
Blackmans Bay
Tasmania 7152

Annual Subscription (12 Issues)

Australia $40
New Zealand & South Pacific

$A60

'Computing With The Amstrad'
welcomes program listings and
articles for publication. Material
should be typed or computer
printed, and preferably double
spaced. Program listings should be
accompanied by cassette tape or
disk. Please enclose a stamped
addressed envelope or the return of
material cannot be guaranteed.
Contributions accepted for
publication by Database Publication
or its licensee will be on an all
rights basis.

©Database Publications and
Strategy Software. No material
may be reproduced in whole or part
without written permission. While
every care is taken, the publishers
cannot be held legally responsible
for any errors in articles, listings or
advertisments.

'Computing With The Amstrad' is
an independent publication and
neither Amstrad Consumer
Electronics plc or Amsoft or their
distributors are responsible for any
of the articles in this issue or for
any of the opions expressed.

33 Forth Listing

Learn a second language.
Here's a sfull listing to help
get you started.

62 Reaction Timer

Are your reactions as good as
they used to be? Better test
them out with this neat little
routine. And if you're as fast
as you think you are, try it out
on your friends as well!

Unties

50 Pascal

A brief introduction to this
structured language, plus a
review of Hi-Soft's standard and
CP/M versions.

59 Printing Labels

Continuing our exploration of
Mini Office Il's versatility, we
see how to produce labels from
the Database.

6 Wordcount
Now you can find out exactly
how verbose you are with this
word counting utility for
Locoscript.

11 Think Slim

Do you want 16 colours in
Mode 1, or 40 columns in
Mode 0? Well here's a
cunning way to simulate this
with slimline characters.

35 Archiver
Find peace of mind: Back up
those vital disks onto tape with
this invaluable disk-spooling
routine.

53 REM Stripper
Once program development is
complete, this invaluable utilty
will reclaim memory used by
REMs.

4 Computing With The Amstrad - December 1986

Contents

17 Robot Ron
Having escaped the weevils
our intrepid hero takes on the
Ice Monsters. Can you ensure
his survival?

44 Santa's Grotty

Dare you enter the infamous Grotty
and retrieve all Santa's stolen stars?
You'll have to watch out for the
meanies though - Christmas means
nothing to them!

Computing With
The Amstrad has
moved.

Computing With The Amstrad
(and, of course, Strategy
Software) has moved to
Tasmania. As a result of this
move we now have more room
in which to work and employ
more staff to service your needs.
Improvements in service will
become apparent in the early part
of 1987 and we ask for your
indulgence during our re
organization period. Please take
note of our new address and
telephone number.

8 First Steps
Parts three & four of our
reprints from the U.K.
edition of CWT A. Part 3
looks at string variables while
part 4 (which begins on page
12) concentrates on longer
variable names and the
INPUT statement.

16 Analysis
Ever wish you could line up
numbers and achieve that
professional finish to your
programs? Trevor Roberts
dissects a string handling
routine which does just that.

21 Graphics
Written mainly for the 464
but of use to every CPC
owner the first of our new
series will help you make the
most of your Amstrad's
amazing graphic capability.

25 Public Domain
Shane Kelly continues to provide a
feast of well documented software
for disk based CPC machines as
well as the PCWs.This month he
concentrates on communications
with some excellent Modem
programs.

26 CP/M
In the second part of our series we
look at the various console
Command Processor (CCP)
keywords.

28 Sound
Still puzzled by the way your micro
produces noise and music? Here we
delve further into the Amstrad's
SOUND facilites with a
comprehensive look at the pitch
envelope.

32 Ready Reference
Are you annoyed by ASCII,
confused by CHR$ or
aggravated with ASC? Keep
cool, the facts are at your
fingertips.

54 Machine Code
Yet another new series - don't
tell the know-it-alls, but machine
code is really quite simple -
when it's explained as clearly as

this that is.

62 Aléatoire
Our resident puzzles expert
unravels the complexities of
Knightlore and takes a look at a
classic number puzzle.

Computing With The Amstrad - December 1986 5

ALMOST a year has gone by and
we still haven't seen any add-ons
for LocoScript. One of the
facilities sadly missing from it is a
built-in word counter, and though
such programs are available com
mercially for the PCW they all
come as part of other packages
like spelling checkers and alter
native word processors.

So until now if you didn't feel like
spending money on software you
don't really need, you had to be
content with counting your blessings
and making rough estimates of the
number of words in a file.

But here's a word count program
offered by Computing with the
Amstrad for free. It's written in
Mallard Basic, which every PCW
owner has. It won't handle an
unmodified LocoScript file - there
isn't yet a program of any description
that will - but it can be used with an
Ascii file created using the f7 option
on the disc management screen. Use
the simple Aciii, not the page image
option.

First type the Basic program into
the machine and save it on a blank,
formatted disc with the name
WCOUNT. Then using the Pip utility
copy from the system disc the files

1080

2030

2220

3010

4100

5000

5060

220

program structure

a Pascal style block structure this seems the easiest
way to handle these options. while the

using RUN. return from the
Files must not be · subroutine where

hence the two memory statements.
Allows the printing of the Basic error message.

Count
your
blessings

JOHN MILSON writes a word
counter for LocoScript

J14CPM3.EMS, BASIC.COM and
SUBMIT.COM.

Should you have another version
of CP/M, then its filename would be
slightly different. The name would
also need to be corrected in line 220
of the program.

Now using the Basic RPED utility
set up a file with the name
PROFILE.SUB containing the single
command line BASIC WCOUNT. The
use of these utilities is described in
the manual. The word counter is now

complete, with all the necessary files
on the one disc.

Let us suppose that you are using
the word processor and want to count
words. First you have to copy your
document into the first group of drive
M, using the f3 option of the disc
management screen. If you have two
disc drives or a PCW8512, this step
can be bypassed.

Next you replace the LocoScript
disc with your word counting disc, not
forgetting to press f 1. Then you make
a simple Ascii text file, using the
menu called up by f7. The destination
of this must be the first group - Group
0 - of drive A.

This procedure is explained in the
document called READ.ME. Now you
have a suitable version of your
document on the same disc as the
word counting program. Just reset
the machine with Shift+Extra+Exit
and watch things happen.

The screen should come to rest
showing an option menu and notes,
and the word counter is now ready to
use. Just follow the instructions,
requiring merely a few single
keystrokes.

The use of the program could be
simplified a little by modifying it to
run, after resetting, without a pause
through the file finding and word
counting routines. However as it is
you can handle documents in batches
if you wish, or if you have a very large
document-say, more than 90k-you
can put it on a disc of its own.

6 Computing With The Amstrad - December 1986

BASIC.COM
SUBMIT.COM

From Page 6
10 ' ♦»♦♦♦♦♦♦♦♦♦» iCOUNT »HHHHHt
28 ' HORD COUNTER FOR LOCOSCRIPT
25 ’ DOCUMENTS
30 ' * John Milsoa April 1986 *
40 ' « East Grinstead »
50 ' «HHHISHHHHHHHHHHH»
60 '
70 ON ERROR SOTO 5000
80 HIDTH 90
90 '
180 ' »*»« "Print" controls etc. ««♦
190 '
200 esct » CHRt(27): ball » CHRt(7)
210 hoot ■ asci + "H"i ell ■ asci + "
E"i cist ■ clt + host
220 DEF FNprog(ft)«INSTR(l,"J!4CPM3.E
MS,BASIC.COM,SUBMIT.CON,PROFILE.SUB,N
COUNT.BAS",ft)
230 PRINT cist: SOSUB 4000
240 1
470 ’
480 ' ♦»»«»«»» Option Point ♦«»«♦«»♦♦
490 ‘
500 HHILE -1
510 PRINT bait) "Press key for requir
ed option.";
520 IF filet « "" THEN PRINT " (You
need to choose a file. Option 1 or F)
" ELSE PRINT " To show Menu, press 0
or M.": PRINT"(Current file is "¡file
t)"l"
530 kt · ""
540 HHILE kt ■ ""ikt · INKEYtiNEND
550 PRINT cist
560 ON INSTR(l,"0MalFf2Cc3Ee",kt) BOS
UB 4000,4000,4000,1000,1000,1000,2000
,2000,2000,3000,3000,3080
570 PRINT
580 MEND
590 '
970 '
980 ' ««««a«» 1, Find file ♦♦«»♦»♦»»»
990 '
1000 nX«l
1010 PRINT "Do you want to do anythin
g with this file (y/nl?"
1020 ft « (FINDt("».*",D)
1030 HHILE ft <> "
1040 IF FNprog(STRIPt(ft)) <> 0 THEN
SOTO 1100
1050 PRINT ft;" ? ";
1060 kt«""
1070 HHILE kt«"":kt«INKEYt:HEND
1080 ON !NSTR(l,"YyXx",kt)80T0 1120,
1120,1130,1130
1090 PRINT "No"

1100 nX«nX+l: ft»(FINDt('«.<",nX))
1110 HEND: RETURN
1120 filet«ft: PRINT'Yes":RETURN
1130 PRINT "No": PRINT: PRINT "Search
abandoned": PRINT: RETURN
1140 '
1970 '
1980 ' «« 2. Hord counting routine h
1990 '
2000 IF filet« "" THEN PRINT "You nee
d to find a file naae (Option 1 or F
(.": RETURN
2010 PRINT " Hords in ";filet;·
being counted."
2020 PRINT TAB(20); " Please wait."
2030 PRINT "Approx. 12 seconds for ea
ch kilobyte of original docuaent."
2040 '
2050 ' Initialise counting variables
2060 '
2070 wcX«0: 1X-0: cX«0
2080 '
2090 ' «watt»« Count hmwhhh»
2100 '
2110 OPEN "i",l,filet
2120 cht « INPUTt(l,ll
2130 HHILE NOT EOF(l)
2140 IF INSTRd," Xx",INKEYt)>l THEN
CLOSE It PRINT: PRINT "Count abandone
d": PRINT: RETURN
2150 IF ASC(cht) <» 32 THEN cX>0 ELSE
cX»l
2160 IF IX · 0 THEN IF cX ■ 1 THEN wc
X » wcX + 1
2170 1X«cX
2180 cht ■ INPUTt(l,ll
2190 HEND
2200 CLOSE 1
2210 PRINT belt;clst; "Nuaber of word
s in "¡filet;" ■ "¡wcX
2220 free » FRE(")
2230 RETURN
2240 '
2970 '
2980 ' «♦♦♦*♦♦ 3. Erase File ♦»♦»«♦♦♦
2990 '
3000 IF filet ■ "’ THEN PRINT "First
please find filo naae (Option 1 or F
).": RETURN
3010 IF filet <> STRIPt(filot)THEN PR
INT "You are not allowed to erase thi
s file": RETURN 3020 PRINT clst;"Are
you sure you want to erase ")filet|
" ? (y/nl"
3030 kt » ""
3040 HHILE kt · ""
3050 kt « INKEYt

3060 IF kt <> "" AND INSTR(l,"Yy",kt)
<> fl THEN KILL filet
3078 HEND
3088 PRINT cist
3090 RETURN
3100 '
3970 '
3980 ' «»»♦♦♦»»«» fl, Menu hhhhh»
3990 ’
4000 PRINT "Menu of Options": PRINT
4010 PRINT "0. Menu: Display the opti
one"
4020 PRINT "1. Find the file you want
to use"

4030 PRINT "2. Count the nuaber of wo
rds in the file"
4040 PRINT "3. Erase the file"
4050 PRINT: PRINT "To call option, pr
ess option No. or initial letter."
4060 PRINT: PRINT "To abandon operati
on in progress, hit x": PRINT
4070 PRINT "It is a good idea to eras
e files created especially for word c
ounting"
4080 PRINT "after they have been used
, in order to avoid cluttering the di
sc.": PRINT
4090 PRINT "If, on trying to erase a
filo, you get a aessage at the bottoa
of the screen"

4100 PRINT "offering the options: Rot
ry, Ignore or Cancel, press I and ch
ock your disc."
4110 PRINT "You'll probably find it t
o bo write-protected.": PRINT
4120 RETURN
4130 '
4970 1
4980 ' ♦«♦♦»# Error routine ·»♦♦«»♦
4990 '
5000 PRINT: CLOSE: MEMORY,256: MEMORY
,512
5010 IF ERR « 53 THEN PRINT filet)
" not found on this disc.": PRINT: R
ESUME 500
5020 IF ERR > 62 THEN PRINT filet;
" is an eapty file.": PRINT: RESUME
500
5030 IF ERR > 64 THEN PRINT filet)
" is not a valid file naae."i PRINT:
RESUME 500
5040 PRINT belt)"Error No. ")ERR)’. T
his error was not foreseen."; belt
5050 PRINT "Try to restart with 'RUN
<RETURN>'"|bilt
5060 ON ERROR BOTO 0
5070 END

Computing With The Amstrad - December 1986 7

w E saw last month how to
write our own programs,
however primitive. Now

we'll look at some ways of im
proving them. I don't guarantee
that you'll be able to produce
spectacular programs by the end
of this article, but you will
certainly be well on the way to an
understanding of Basic.

First, though, let’s recap a little:
We saw last month that a Basic
program consists of a numbered
sequence of instructions to the
computer.

To enter one of these instructions
we simply type the correct line
number, followed by the appropriate
Basic keyword, then press Enter.

As we discovered, because of the
line number the Amstrad doesn’t do
what you tell it immediately but
remembers it as part of the program.

To see all the instructions in a
program we type:

LIST [Enter].
To actually get the Amstrad to

carry out the sequence of instructions
we type:

RUN [Enter].
To clear a program from memory

(and we should do this before
entering a new program) we use:

NEW [Enter].
We saw that we tended to enter

line numbers in steps of 10 to allow
us to fit in other instructions between
them if necessary. Also we found that
we could replace a line with a better
version by simply giving the new
version the line number of the old
one.

Finally, to delete a line completely
we simply type the line number and
press Enter.

Program I is the one we started
with last month. Before we continue,
type it in and run it, to make sure you
know what's going on:

10 PRINT ‘PROGRAMING*
21 PRINT *IS*
38 PRINT 'EASY*

Program I

Program II is another way of
achieving exactly the same output.
Type it in and try it.

Apart from its being an incredibly
long-winded way of doing things,

Now for the ne*t &teP I
Lets pick up I

handyjary^

Third in MIKE BIBBYs
guide through the micro
programming jungle

18 REPROGRAMING*
20 BP'IS'
30 O'EASY*
40 PRINT At
50 PRINT B$
¿0 PRINT Cl

Program II
what else is going on?

Well, as you will recall from the
first article in this series, the words
inside quotes are known as strings —
because the computer simply
remembers them as strings. That is, it
considers HAMSTER as H, followed
by A, followed by M and so on, with
no idea of the word's meaning.

I don't think that it takes all that
much imagination to see that when
your computer is printing a lot of
output you might be using the same
string rather a lot.

For example, in a business letter
you might use the name of the
company fairly frequently - for
example, BBC for British Broadcast
ing Corporation. The Amstrad's Basic
allows us to use much the same idea,

but more as labels than abbreviations.
For instance, in line 10 of the

above program we have labelled the
string "PROGRAMMING" with the
label A$.

In computer terms we have
assigned to A$ the value "PRO
GRAMMING".

All this means is that from now on
wherever I want to use "PROGRAM
MING" in my program I can replace it
with A$. So line 40, which is

40 PRINT A$
causes the micro to print out
"PROGRAMMING".

Admittedly in this example this
technique of labelling doesn't save
much space or effort, but if the
program uses the word "PROGRAM
MING" 100 times there would be a
substantial saving in using A$ instead
of the string itself.

Similarly, line 20 causes B$ to
label "IS" and line 30 labels "EASY"
with C$, so that lines 50 and 60 give
the appropriate printout.

Notice the following points:
• We have chosen our labels so that

8 Computing With The Amstrad - December 1986

they consist of a letter of the alphabet
followed by the "$" sign. Actually, we
don't have to restrict ourselves to just
one letter, as we shall see, but our
label must end with the "$" sign,
since this warns the computer that
we are labelling a string. (We'll see
later how to label other things.)
• While I used A$ for the first label,
B$ for the second and C$ for the third,
this was totally arbitrary on my part -
labels don't have to follow alphabetic
or any other kind of order.
• Although we use an equals sign
("=") to connect the label with what it
is labelling, it is safer, as we shall see,
not to think of it as an equals sign -
think in terms of A$ becomes
"PROGRAMMING" rather than A$
equals "PROGRAMMING".
• We must have the label on the left
and what is labelled on the right of the
equals sign. A line such as:

1 0 "PROGRAMMING" = A$
just does not make sense to the
CPC464. Try it for yourself!
• When labelling we put the string
inside quotes, as we did previously
when using the PRINT statement to
print out strings. So line 10 reads:

10 A$ = "PROGRAMMING"
From now on A$ completely replaces
"PROGRAMMING", quotes and all,
so that when we say

PRINT A$
we don't have to use any quotes -
they're already there, implicit in the
label A$.

Have a look at Program III. It's
virtually identical to Program II except
for lines 40 to 60. Here, instead of
using A$,B$ and C$, we use the
lower cased versions, a$, b$ and c$.

II AI-'PRDSRANMING'
21 M>'IS'
31 «•'EASY'
41 PRINT <1
51 PRINT bl
61 PRINT cl

Program III

However when you run the
program this makes no difference —
the output is the same as in Program
II. This is rather odd - you have, for
instance, given a value to A$ in line
10, and managed to print it out using
a$, in line 40!

The point is that as far as the

Amstrad is concerned labels that
contain the same letters are identical
— whether they are in upper or lower
case. So:

PRINT A4
is the same as

PRINT al
Beware - not all micros are like

this . . .
Now when we label a string the

label refers to whatever is inside the
quotes, including spaces, as you will
see if you run Program IV:

Notice that our punctuation -
semicolons and apostrophes - works
for labelled strings just as it worked
on its own.

Notice also that we have intro
duced a new Basic keyword in line 10
— REM. We use REM, which is short
for REMark, to add comments or

headings to our programs.
When the Amstrad encounters

REM in a line it ignores everything
else after it on the same line. This
means we can write whatever we
want after REM (providing it is on the
same line) without fear of the micro
giving us an error message - the
CPC464 doesn't "read" the line
beyond the REM.

If we use REM to prefix our
comments on the program we can
annotate our program. Certainly each
main subdivision should have one or
more REM statements explaining
what is going on.

Since the Amstrad ignores the
contents of REM statements you
could leave them out of your program
entirely and it will work as effectively.
However it is good programming
practice to include them.

In the program examples I have
used a single REM at the beginning of
the program, as it is so short. Bear in
mind however, that REM can appear
on any line in a program.

Now for some jargon. From now
on we shall refer to our labels as
variables. Don't be put off by the
mathematical sound of that-they are
still just labels! And instead of saying
we are labelling, we say we are
assigning, as we have mentioned

Computing With The Amstrad - December 1986 9

previously. The actual string involved
is known as the value of the variable.

So:
A$ = "TEST"

reads "the string variable A$ has
assigned to it the value 'TEST'". The
actual act of giving a variable a value
is called an assignment.

To return to the world of actual
programs, you can mix and match
string variables and actual strings
however you want. Program V
illustrates the point:

10 REN PROGRAM V
20 NODE 1
30 A« » "NY NANE IS"
40 Bl * ' NIKE"
50 PRINT Al; Bl
¿0 PRINT "NY NANE IS";BI
70 PRINT Al;" NIKE'

Notice the space of the beginning
of the string assigned to B$ - you
need this otherwise the output looks
rather odd. Leave it out if you don't
believe me!

As we saw last month, a

fyou can mix and
match string
variables however
you want1

semi-colon at the end of a line causes
the next output to start immediately
after the last and not on a new line -
as it would do in the absence of the
semi-colon. That is, it "glues" the
strings together.

The internal semi-colons of lines
50, 60 and 70 do much of the same,
"gluing" variables to strings, etc.

While this is grammatically correct
Basic, the Amstrad assumes (unless
you tell it otherwise) that variables
and strings mentioned in the same
PRINT statement are meant to be
output continuously on the same line.
To prove this run Program IV omitting

all the semi-colons.
You've got to be careful here,

though. If you typed line 50 as:
50 PRINT AIBI

— that is, with no space between the
variables - the program would still
work. This is because the Amstrad
recognises the "$" as a delimiter of
the string.

Be careful of running variables
together like this though. It can cause
problems later - and it makes your
programs very hard to read. Stick to:

50 PRINT A* Bl
if you want to do this sort of thing.

Also, while we're on the subject of
grammatical propriety, when we're
assigning variables we should use the
LET statement. So line 40 should
read

40 LET B$ = "MIKE
As you've already discovered, we

can omit LET altogether.

• Next month, more on variables
and INPUT - which opens the door to
effective programming.

FULL AMSTRAD RANGE
OVER 220 SOFTWARE
TITLES IN STOCK AT
ALL TIMES!

• AMSTRAD DUST COVERS
• DISK WIZARD
• GOLDMARK T.I.E.S.
• MONITOR EXTENSION LEADS
• DISCMASTER
• SPEEDTRANS

Mail order and
Telephone specialists Dealer inquiries welcome.

Computer Oasis
Telephone: (09) 385 1885

1ecFFs©ft
Computer Wholesale

Telephone: (09) 385 1765

324 STIRLING HIGHWAY, CLAREMONT, WA 6010

10 Computing With The Amstrad - December 1986

Μ SUN Pack more into
a column with
ROBIN NIXON'S
character
cruncher

AVE you ever wanted toHave you
have the
in Μ

use of 16 colours
In Mode 1, or wanted 40

columns per line in Mode 0? Well
with this utility you can have
both. And, as well as that, if
you've got very good eyesight,
you can have 160 columns per line
in Mode 2!

"How is this possible?" you may
well ask. The answer is simple. As you
know, Amstrad characters are
defined by an 8 x 8 grid which can be
re-defined using the SYMBOL com
mand.

However with a little cunning it is
possible to squeeze a complete
character set into a 4 x 8 grid.

This is exactly what I've done in
Program I. The left hand sides of
characters 32 to 127 have been

re-defined and the right hand sides
have been left blank.

This means that once one charac
ter in a string has been placed on the
screen the next character can be
placed over the right hand side of it,
over writing the blank part of the first
character, thus allowing for twice the
number of characters per line.

Program II is a demonstration of
how to use the new definitions. It first
sets up four variables:

ZM
ZX,ZY

ZZ$

The current screen mode.
The X and Y coordinates of
where text is to be printed.
As with LOCATE X,Y.
The string you wish to
print.

It then GOSU Bs 60000 in order to
display the slim characters.

So, to use Slim Characters in your

program - a game for example - first
type or load in Program I, the one
containing all the character data.
Change the filename in line 310 to
that of the program it
incorporated in, such as
and SAVE it.

Now load in your

is to be
SPACINV

program
SPACINV and add line 60000 from
Program II to the end of it, along with
the necessary extra lines to pass the
parameters ZM, ZX, ZY, and ZZ$.
Then SAVE the final version of the
game.

Bear in mind that the SYMBOL
AFTER 32 command has already been
initiated in this utility and if you have
used it in your program it must be
removed from your original or the
slim character set you are trying to
use will be destroyed.

Program I

111 REH hhhhhhhhhhh 1131 DATA IAEIEAM 1311 DATA EA264I48
111 REN » « 1141 DATA 4EC46E48 1321 DATA EAAE8AEI
121 REN ♦ SLIN CHARACTERS « 1151 DATA A2448AH 1331 DATA EAAEAAAI
131 REN ♦ « 1168 DATA AEAIA4AI 1341 DATA CAACAACI
141 REN » By Robin Nixon · 1171 DATA 26411111 1351 DATA EA888AEI
151 REN « « 1181 DATA 48888841 1368 DATA CAAAAACI
168 REN » (c) Coaputing with « 1198 DATA 42222248 1378 DATA EA8C8AE8
178 REN · th· Aattrad * 1188 DATA I4E4E488 1388 DATA EA8C8888
181 REN » « 1118 DATA B44E44M 1398 DATA EA8AAAE8
191 REN HHHHHHHHHHH 1128 DATA IIMI448 UH DATA AAAEAAA8
218 REN 1131 DATA NIEHN HU DATA E44444E8
211 NODE hLOCATE 14,l2lPRlNT,Plaaaa 1148 DATA MN8448 H2I DATA E2222AE8
wait...-iDEFINT A-ZiDIN A(8) 1158 DATA 22448888 1438 DATA AACCAAA·
228 8YNB0L AFTER 256 1168 DATA 4AAAAA48 H4I DATA 88888AEI
231 8YNB0L AFTER 32 1178 DATA 4C4444E8 H58 DATA AEEAAAA8
241 FOR X-32 TO 127 1188 DATA EA2EB8E8 H68 DATA AAEEEAA8
258 READ A4 1198 DATA EA242AE8 H78 DATA EAAAAAE8
268 FOR Y»1 TO 8 1288 DATA 88AAE228 1481 DATA EAAE8888
271 AiYHVALiV+NlDttAMjiH'l·) 1218 DATA E8E22AE8 H9I DATA EAAAAC28
288 NEH Y 1228 DATA EA8EAAEI 1588 DATA EAAECAA8
298 8YNB0L X,A(1),A(2I,A(3),A(4I1A(5) 1238 DATA E2222228 1511 DATA EA8E2AEI
,A(6),A(7),A(8) 1248 DATA EAA4AAE8 1528 DATA E4444448
388 NEXT X 1258 DATA EAAE2AE8 1538 DATA AAAAAAE8
318 RUN 'SLINFILE* 1268 DATA 84481448 1548 DATA AAAAAA48
328 END 1278 DATA 84488448 1558 DATA AAAAEEA8
1888 DATA HH88N 1288 DATA 12484288 1568 DATA AA444AA8
1818 DATA 44444848 1298 DATA MEIEI88 1578 DATA AAE44448
1828 DATA AAAII888 1388 DATA 88424888 1508 DATA EA248AE8

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

598 DATA E8B888E8 1788 DATA 88EAAAA8
688 DATA 88442288 1798 DATA HEAAAES
618 DATA E22222E8 1888 DATA MEAAE88
628 DATA 4EA8N88 1818 DATA 88EAAE22
638 DATA BIOONIE 1828 DATA 88EA8888
648 DATA EA8848E8 1838 DATA ME8E2E8
658 DATA 88E2EAEI 1848 DATA 44E44468
668 DATA 88EAAAE8 1858 DATA 88AAAAE8
678 DATA 88EABAE8 1868 DATA NAAA448
688 DATA 22EAAAE8 1878 DATA 88AAEEA8
698 DATA HEAE8EI 1888 DATA I8AA4AA8
788 DATA HE8C888 1898 DATA HAAAE2E
718 DATA HEAAE2E 1988 DATA I8E248E8
728 DATA 88EAAAA8 1918 DATA 264C4628
738 DATA 48C444E8 1928 DATA 44484448
748 DATA 286222AE 1938 DATA 8C464C88
758 DATA 88AACAA8 1948 DATA AE888888
768 DATA C44444E8 1958 DATA 88888888
778 DATA 88AEEAA8

18 NODE 8iZN>8
28 ZX-18lZY-18tZZ»«'Hallo tharaü'tOO
SUB 68881
38 END
68888 ZNl»2*(3-ZNH2tZXl-(ZX-l)«ZNl-Z
Nl:ZYl=398-(ZY-l)*16sTA6:F0R ZZ«1 TO
LEN(ZZ»hNOVE ZXl+ZZ»ZNl,ZYhPRINT NI
D4(ZZt,ZZ,lljiNEXTiTASOFFîRETURN

Program II

Computing With The Amstrad - December 1986 11

Making capitai oat of
longer variables...

Fourth in MIKE BIBBY's helpful guide
through the micro programming jungle

_ - .1 E saw last month how to
\ A / label strings with vari-
V * ables. This meant that if

we were using a string several
times in a program we could use a
variable instead of it.

For example:
A!='AUSTRALIA"

means that, from now on, instead of
using "AUSTRALIA” in full in our
programs, we can use A$.

PRINT Al
will print out AUSTRALIA for you.

The labels we used last month
were all single letters of the alphabet
followed by '$'. The dollar sign tells
the computer that it is a string we are
labelling - such a variable is called a
string variable.

It is called a variable because the
"contents” of a variable (in technical
terms, its value) can vary throughout
a program.

Program I should illustrate the
point:

10 REM PROGRAM 1
20 MODE 1
30 Al = "AUSTRALIA”
40 PRINT A4
50 Al = "AMERICA”
60 PRINT Al
70 Al « "AFRICA"
90 PRINT Al

Program !

As you will see when you RUN it,
the value of AS varies as we reassign
it during the program. A$ always
takes the last value assigned to it. You

may wonder why on earth you would
want to use the same variable for
different things, rather than label
everything separately.

As we shall see, it can be extremely
useful.

10 REM PROGRAM II
20 MODE I
30 naae! = "Nr.Stith,"
40 fact! = "You owe te aoney,"
50 threat!® "Pay up or else."
60 PRINT
70 PRINT "Dear "naael
80 PRINT TABI5) iactiithreat!
90 PRINT TABI15) "cordially yours,"
100 PRINT TAB(20) "Mike"

Program II

So far we have restricted our string
variables to single letters of the
alphabet followed by the $ sign, such
as A$, B$ and C$.

However there is no need for such
a limit - provided we follow them
with $. String variables can be made
up of several letters, even words.

Program II illustrates the point. It is
our most sophisticated program to
date, and is well worth having a close
look at.

Perhaps the first thing to remark
upon is that we are now working in
lower case letters as well as capitals.
Infuriating as this is at first for the
non-typist (myself included), it really
is worthwhile.

Notice that in the programs all the
Basic keywords are in capitals.

Now the Amstrad forces this on
you. Keywords are always LISTed in

capitals. If you entered a line such as:
10 ormt "Hello"

it would be LISTed as:
10 PRINT “Hello"

That is, the keyword would be
translated into upper case. Notice
that there's no such translation of the
"Hello”. Since this is a string, in
quotes, it remains inviolate.

In fact, all the following:
10 pRinT "Hello"
10 oRINt "Hello”
10 PRInt "Hello"

would be listed as:
10 PRINT "Hello"

All the variables of Program II
(names$, fact$, threat$) are in lower
case.

This is because I have entered
them this way. There's an important
point to be made here:

On the Amstrad:
10 PRINT threat!

and
10 PRINT THREAT!

would appear different when listed,
since the variable would remain in the
same case - upper or lower-as when
it was typed in. Only keywords are
altered.

However, both lines are
equivalent. The Amstrad doesn't
recognise any difference between the
variables threats and THREATS. In
variable names capitals and lower
case letters are equivalent, so:

threat!
THREAT!
thrEAT!

are considered by the micro to be the
same variable.

10 REM PROGRAM Ill
20 MODE 1
30 threat! = "First"
40 THREAT! = "Second”
50 PRINT threat!
60 PRINT THREAT!

Program III

Program III shows the idea. Line
30 and 40 assign strings to the same
variable, despite appearances. The
value assigned in line 60 replaces
that assigned in line 50 as we saw in
Program I.

My recommendation is that you
enter all variables in lower case. In

12 Computing With The Amstrad - December 1986

this way, when you LIST the program,
the lower case variables will stand out
from the keywords, which are LISTed
in capitals.

This may not make for easy typing,
but it is good programming practice,
since you can tell at a glance what's
what in a program.

Take a close look at those variable
names — we are using actual words
for the labels in this program. Again, it
is good programming practice to do
so, since we can make the label
describe what it is labelling. Programs
make more sense this way.

Thus we use name$ to label "Mr.
Smith",' fact$ to label "You owe me
money", and threat$ for "Pay up or
else”.

This may seem long-winded, but it
really does help to make your
programs more readable, and hence
easier to decipher. For example:

70 PRINT “Dear " naae!
really tells you what the line is doing,
far more than:

70 PRINT "Dear * Ai
Similarly:

PRINT threat!
is more meaningful than

PRINT Bl
The moral is, use words for

variables (labels) as much as possible
- and preferably lower case words.

Actually you can use capitals for
variable names and intermix them
with lower case letters and also
numbers. The rules for doing so are as
follows:
• All variable names must begin
with a letter, though you can follow
this with any mixture of letters,
numbers and dots. Letters may be
upper or lower case. They will
however be considered equivalent.
• You cannot put spaces in the
middle of variable names.
• Variables should be kept separate
from Basic keywords.

The commonest error is to run a
variable into a keyword.

One advantage of using variables
instead of directly using strings is that
we can easily alter the output of the
program.

In the case of Program II, if we
want another victim to be the
recipient of our letter, just change line
30. For example:

30 naae! = "Mr. Janes"
From then on all uses of name$ in the

program will refer to Mr. Jones.
In this short program it doesn't

make a great deal of difference, but in
larger ones, if you had used the string
"Mr. Smith" every time, instead of
name$, you would be in for a lot of
retyping.

You'd have to alter every single
reference to "Mr. Smith" in the
program. If you'd used name$
throughout, all you'd have to do is
change the line assigning name$.

Keeping variables in lower case
can help us with a perennial problem
for newcomers to the Amstrad -
mistakenly tagging keywords onto
variables.

Enter Program IV exactly as shown
- making sure there's a space after
print in line 40.

10 REM PROGRAM]v
20 MODE 1
30 word! - “Heilo'
40 orint word!

When you LIST it, you'll see:

10 REN PROGRAM IV
20 MODE 1
30 word! s "Hello“
40 PRINT word!

Program /I/

RUN the program and all will be
fine.

Suppose, though, that you'd
missed out that space between print
and word$. Enter this version of line
40:

40 printword!
Now LIST and RUN it. You'll get

the error message "Syntax error in
40". As you can see, line 40 is now:

40 printword!
and the micro doesn't know what to
do with this "variable".

More generally, variables tend to
"absorb" keywords that run into
them, to create larger variables. The
keyword in effect "disappears" from
the line, leaving the micro in some
doubt as to what to do.

So to stop this confusion, leave
spaces after — and before - keywords.
Actually you can use characters other
than space as separators, or deli
miters as they are known. Quotes act
as delimiters, as in:

PRINPHello"
If you're in the habit of entering

variables in lower case, when you list
a line, all the words in capitals must
be keywords. If there aren't any
words in capitals on a line you can see
immediately you've slipped up — by
forgetting the keyword, or missing
out a separator.

Right, armed with that advice, let's
return to Program II.

This introduces another new idea,
the use of the TAB() function. This
allows you to specify how far along a
line you want the output of a PRINT
statement to start.

In Mode 1 there are 40 characters
to a line, so the screen can be
considered to be 40 columns wide.
TAB() decides in which column the
printout starts. The 40 columns are
numbered 1 to 40.

When you change mode the
number of characters across the
screen - that is the number of
columns - changes. For example,
Mode 0 only supports 20 columns.

Try running the program in this
mode by changing line 20 to:

20 MODE 0
Can you see what is happening?
After a while TAB() becomes

second nature. All too often
potentially good programs are spoiled
because they are set out badly on the
screen. Careful use of TAB() can
avoid this.

To give you some practice, try
Program V. This prints out a triangle
of asterisks. Can you devise a similar
program, using TAB(), to create a
diamond of asterisks in the centre of
the screen?

Before you continue, you might
d it easier on the eyes if you return
Mode 1 with:

MODE 1 CENTER)
So far we have talked about string

variables. However there is another
kind of variable called a numeric
variable.

These are labels just as much as
string variables are, only they label

10 REM PROGRAM V
20 MODE 1
30 PRINT
40 PRINT TAB(5)"*"
50 PRINT TAB(4)’H"
60 PRINT TAB(3)'H»"
70 PRINT rAB(!)"HHV

Program V

Computing With The Amstrad - December 1986 13

numbers in such a fashion that we
can do sums with them. Try running
Program VI.

Line 30 uses the numeric variable
/I to label the number 10. Notice that
for a numeric variable we can simply
use a letter of the alphabet without
following it with the $ sign necessary
for a string.

Also since it isn't a string, the value
we are giving the variable doesn't
have to be in quotes. Hence line 30 is
simply:

30 A = 10
Line 40 prints out, not A, of course,

but the value that A labels, which is
10.

The most interesting part is line
50. Here we multiply the number that
A labels by two, so that the line prints
out 20.

That's the useful thing about
numeric variables — you can do sums
with them!

Notice that the micro did the
calculation, then printed out the
result. It didn't do anything wild such
as printing out 2 * 10 or whatever.

A sum such as 2 * A or A + 8 is
known as a numeric expression.
When it encounters a numeric
expression, the micro works it out and
prints the answer, rather than printing
the expression itself.

Try running Program VI with the
following versions of line 50:

50 PRINT A + 8
50 PRINT A / 4
50 PRINT A » A

If you've been following what I've
said so far you could be forgiven for
thinking that string variables are for
labelling words, and numeric vari
ables for numbers.

10 REN PRQGRAN VI
20 MODE 1
30 A = 10
40 PRINT A
50 PRINT 2 « A

Program VI

Life is never that simple. You can,
and often do, use string variables for
labelling numbers - the point is that
you can't do sums with them. Try
Program VII, which is based on

Program VI, using the string 21$
instead of the numeric A

The "Type mismatch in 50" that
you receive shows that you are
attempting to do a sum with the
wrong type of variable - string
instead of numeric.

10 REN PROGRAN VII
20 NODE 1
30 At = "10“
40 PRINT At
50 PRINT 2 « At

Program VII

As with string variables, we do not
have to (and should not) restrict
ourselves to single-letter labels for
numeric variables.

We can use words in a manner
strictly analogous to string variables,
save that we omit the final $ sign.
And, of course, we don't put what we
are labelling in quotes, since it isn't a
string.

Again, capitals and lower case are
considered to be identical so 21 is the
same as a.

Have a look at Program VIII. This is
meant to be a cheery greeting for
someone when they RUN the
program in the computer — the sort of
thing I often use in my classes.

10 REN PROGRAN VIII
20 NODE 1
30 na«el = “Nike"
40 PRINT “Good to see you, ’ naeel

Program VIII

However as it stands it's a bit
restricted - after all, only a small
percentage of my students are called
MIKE. What's really needed is some
way for the Amstrad to find out the
name of the person so that it can
tailor the message to suit.

Program IX fits the bill. The trick
here is the use of INPUT name$ in
line 40. In Program VIII, line 30 put
the value MIKE into name$. In
Program IX the variable isn't actually
attached to a specific value - if you
like, you give the program a label, but
neglect to tell it what it's labelling.

Instead you type:

INPUT n»et
When the Amstrad reaches this

line it waits until you PUT IN, or

INPUT, the value you want name# to
have by typing the value in.

To put it another way, when the
computer meets an INPUT statement

10 REN PROGRAN II
20 NODE I
30 PRINT "Khat is your n»»e";
40 INPUT name#
50 PRINT "Good to see you, ’ naief

Program IX

followed by a variable, it asks you
what you want the variable to be - in
fact, it actually puts a question mark
on the screen.

You are then supposed to type in
the answer followed by Enter, which,
as always, sends it to the computer,
which then carries on with the rest of
the program.

So when you run the above
program line 30 asks: "What is your
name". Notice that we don't need a
question mark-the INPUT statement
of line 40 supplies that.

The micro then waits for us to type
our reply and send it by pressing
Enter. Whatever we have typed in
then becomes the value of name$ -
even if we have lied!

Line 50 then prints out the
message.

The point of all this is that in
Program IX, as opposed to Program
VIII, the value of name$ is not fixed
initially, but is decided during the
program by the response to INPUT.

This means that every student in
the class can now run the program
and have the message tailored to
themselves.

Incidentally, line 30 is not strictly
necessary, but it is only polite to tell
people what kind of response you
expect them to make. Otherwise they
will be met with just a question mark,
followed by a cursor — not too
"user-friendly" as the jargon has it.

The semi-colon at the end of line
30 "glues" the question mark, or
prompt, as it is known, to the
preceding "message". Running the
program with it omitted should make
this clear.

Remember, when you run Pro
gram IX and it asks for your name, you
must type your reply then press Enter.
If you omit Enter the Amstrad won't

14 Computing With The Amstrad - December 1986

receive your answer and will continue
waiting. This could be incredibly
boring! ,

If you make a typing mistake
before you press Enter, you can erase
it with Delete. Once you've pressed
Enter, though, you're stuck with what
you've typed.

You can use INPUT with numeric
variables as well as strings. Program
X demonstrates this. When you get
the prompt, try typing in a word rather
than a number and see what happens.

A slightly more serious application
of INPUT allows you to calculate the

18 REM PROGRAM I
28 MODE 1
38 PRINT "How old are you1!
48 INPUT age
58 PRINT "I don’t believe you are "j a
9«
Program X

product of two numbers, as Program
XI demonstrates.

Look carefully at line 70 and see if
you can work out what's happening.
first isn't in quotes, and so the micro
will print the number that first labels.
"Multiplied by" is printed literally

since it is in quotes.
The numeric variable second is not

in quotes —it may have them on either
side, but the quotes on the left are
already paired with the quotes on the
far left, so they don't count. The micro
will, therefore, print out the value of
second.

"Is" is printed literally, since it is in
quotes. first*second isn't in quotes,
so the sum is done and the answer
printed out. Figure I should help to
make this clearer.

Finally, try altering Program XI so
that it adds or subtracts pairs of

numbers.
We've covered an enormous

amount of ground here and I suggest
that you spend a good while going
over the programs. If you are having
problems, re-reading the earlier
articles will probably help.

Above all, remember it's a
"hands-on" course-you can't expect
the examples to make sense until
you've typed them in!

18 REM PROGRAM XI
28 MODE 1
38 PRINT ’First nutber";
48 INPUT first
58 PRINT "Second nueber’j
68 INPUT second
78 PRINT first " eultiplied by ’ secon
d ’ gives " first* second

Program Xi

Figure i: Mixing variables and strings in PRINT statements

70 PRINT first "multiplied by" second
A

"gives" first * second

variable

in quotes

variable
in

quotes
Calculate then

print out answer

Computing With The Amstrad - December 1986 15

AVE you ever wanted to
display a set of numbers
with all the decimal points

aligned under each other? That's
the task set this month. Centre
Point solves the problem using
the LEN and MID$ commands to
dissect the numbers and find
where the decimal point occurs.

Amstrad Analysis
Get right to
the point
with Trevor Roberts

Line number

10,20 Tell humans the title of the program and who
wrote it. The Amstrad itself ignores
everything after the REM.

30 Puts the micro into Mode 2, the 80 column
mode.

40-100 Form a FOR ... NEXT loop which cycles five
times to deal with each of the five numbers
in turn.

50 Each time round the loop reads the next
number from the data list and stores it in the
string variable number$.

60 Ensures that offset is set to zero each time
round the loop.

70 Calls the subroutine that locates the position
of the decimal point — if any — in number$.

80 Ensures that all the decimal points are
printed under each other. This is done by
making the print position 40 minus the
number of figures left of the decimal point in
number$.

90 Prints out number$ each time round the loop
cycle.

110 Stops the program from crashing into the
subroutine below.

120-180 Form the subroutine that searches number$
for its decimal point.

130-170 Make up a FOR .. . NEXT loop which cycles
once for each character in number$.

140 Takes one character from number$ and
stores it in check$. By the time the loop has
finished, every character in number$ will
have been stored in check$.

150 If check$ is a decimal point then its position
— given by the value of search — is stored in
offset.

160 If the whole string has been checked and
offset is still zero then the number has no
decimal point. One is added to offset to give
the position of the invisible decimal point at
the end of a whole number.

180 Ends the subroutine.
200 Holds the five numbers to be printed.

FOR.. · NEXT loop
reads number $ and
calls subroutine

Subroutine to
find decimal
point· position

©1180 RETURN
190 REM THE NUMBERS T B EN1R

Data \i&

Zeroes offset each
time round loop

Stores number Pom
Dota hst in numbers

30 MODE L
<0 FOR loop» 1 TO 5

0 I 50 READ nuaber*

70 GOSUB 130
© 00 LOCATE 40-offset,loop

90 PRINT nuaber*

n 10 REM CENTRE POINT
20 REM Trevor Roberts

80 offset®® h

I 100 NEXT loop

© H20 REM SEACH FOR DECIMAL POINT
130 FOR search=l TO LENInuaber
140 check*»MID*(nuaber*,search,l)

IF check*»“." THEN offset-search
■^ 160 IF search-LENlmberl) AND offset

.0 THEN offset» LENfnuaberlHl
170 NEXT search

FOR... HEXT l°°P
Sifts through number $

with MIDI

This is the

-all hned up
1.2

12.3
12.34

123.45
123.45t

16 Computing With The Amstrad - December 1986

(fatte o£tìieWt(wt6

Robot

Monsters
By STEPHEN MARTIN aiiftâ^^lit1 J Slijfitrii ~

OT content with the
scalps of many a sorry
Weevil, Robot Ron goes in

search of greater excitement and
danger.

He stumbles into a huge ice
maze inhabited by extremely
dangerous super pink furry mon
sters - just what he was looking
for.

Unfortunately in the extreme
cold of this region Ron's trusty
zap gun will not function, so he
has to rely on his immense
strength to push ice blocks over
passing ice monsters.

Any keys or the joystick can be
used to control Ron. You define
the keys which suit you best by
choosing option 4 on the menu.
However the movement keys are
set to the following when the
program is first run:

z
X

1
Entor/Retum

left
right
up
down
push/crush

To pause the game proas the
Escape key once, then press any
other key to resume.

x,y
a (20,25)

r(20,1)
nil·)

J hi(a)
I score
I men
I act
I dead

Ron's coordinates.
Screen map-
Monsters' coordinates.
Hi-scorers' names.
Hi-scorers' scores.
Score.
Lives left.
Level reached.
Dead flag. Full listing starts

on Page 18

Computing With The Amstrad - December 1986 17

From Page 17
II REH Robot Ron v ko Monster*
21 REH By Steven Kortin
31 REH (c) Coeputing Nlth The Aoitrad
41 REH
51 HODE tiCALL lBC62tHEH0RY »FFF
il d-l8io«19i4-22ig-7lih-63
78 808UB 82liREH initial in
88 808UB 448iREH data
91 808UB 19HtREH title uroon
181 808UB 2858
111 HÖBE I
121 80SUB 26MtREH ipeod aolKtion
131 HOHE I
141 808UB 26liREH ainu
151 GOSUB 2151
Ul HÖBE I
171 80SUB BSItREH iot variable*
181 GOSUB 91Bi REH wipo
191 GOSUB Mit REH iot icreon
211 GOSUB 1398tREH aove aonitor*
211 GOSUB 93IIREH puih/cruih
221 1F e·! THEN GOSUB 1511tHOBE BiFOR
i-l TO 2HiNEXTtS0T0 181

231 1F dead-1 THEN GOSUB 1566t KODE 8t
FOR el TO 2MiNEXTt80T0 188
248 GOTO 218
258 REH- - - - - - - - - itart icreon- - - - - - - -
261 HOBE BlCALL lBB4EtCALL lBC82tDRAN
8,398,4ißRAN 638,398tBRAN 638,8lDRAN
8,6iPEN liLOCATE 9,2lPRINT ‘HENU*

278 PEN 2iBORDER 61INK 2,24
281 LOCATE 5,7tPRINT’ up * *|ikMiG
08UB 418
298 LOCATE 5,9tPRINT" down - ‘|tk-4i8
08UB 418
318 LOCATE 5,11tPRINT’ leit - ‘|tk-gi
GOSUB 411
318 LOCATE 5,13iPRINT'right - *|tk>hi
GOSUB 488
328 LOCATE*5,15tPRINT* puoh - *|tk>di
GOSUB 488
338 PEN 4
348 LOCATE 4,19tPRINT*8paco or Firo't
LOCATE 7,2liPRINT’to play*
358 LOCATE 2,22tPRINT*0 4or optioni o
enu*
361 1F !NKEY(76)>-1 THEN dl-76tol-72t
4l-73tgl-74ihl-75iky8iRETURN
371 1F INKEY(47)>-1 THEN dl-dtel-ei41
«4igl-gihl-hikyltRETURN
388 IF INKEY(34)>-1 OR INKEY(32)>-1 T
HEN GOTO 1158
398 GOTO 368
418 RESTORE 2448tFOR a>l TO 71tREAB t
418 IF t>k THEN PRINT kol(a)ia>71
428 NEXTtRETURN
438 REH- - - - - - - - - data.

448 RESTORE 478t FOR i-8 TO 98
458 READ alt POKE M8H+i,VAL(T+a*)
468 NEXT
478 DATA dd,70,88,87,87,87,87,87,32,4
7,al,26,cl,dd,7o,64,3d,87,87,64,11,«
,BI,dd,46,82,15,19,II,k,o5,26,cB,dd,
7o,88,3d,87,87,64,11,58,88,dd,46,86,8
5,19,II,4d,11,4d,17,16,18,36,18,23,36
,68,23,36,18,23,36,88
486 DATA 19,16,42,01,11,88,01,66,18,1
a,77,13,23,la,77,13,23,la,77,13,23,la
,77,13,78,61,4d,87,l9,47,18,o9,c9
496 FOR i-8 TO 127IREAD jtPOKE IA1H+
i,jiNEXT
568 DATA 6,65,138,8,6,65,138,8,8,8,1,
6,8,211,227,6,65,81,162,138,1,85,176,
8,6,178,85,8,68,136,68,136
516 DATA 8,248,248,8,86,68,66,166,186
,51,51,128,186,162,153,128,188,162,15
3,126,166,51,51,126,86,68,68,166,8,24
8,246,6
526 DATA 1,15,15,8,5,15,15,18,15,173,
94,15,-94,173,94,173,94,47,31,173,15,1
5,15,15,15,15,15,15,5,16,5,18
538 DATA 8,8,8,8,8,3,252,8,1,86,252,1
68,1,86,252,168,1,87,252,168,1,86,252
,168,1,86,252,168,243,243,243,243
548 RETURN
558 REH- - - - - - - - - aove aan- - - - - - - - - - -
566 i«x+IINKEY(gD>-l)-(INKEY(hi)>-i)
576 j«y+(!NKEY(ol)>-lHINKEY(41l>-l)
588 IF a(i,J))l THEN RETURN
598 CALL M8M,x,y,i,j,8
688 x-iiy-j
618 FOR t-l TO ipodtNEXT
626 RETURN
638 REH- - - - - - - - - - icreon- - - - - - - - - - -
648 BORDER 81FOR t- 1 TO I9ia(t,4)»3i
a(t,24)>3iNEXTiF0R t-4 TO 24ta(l,t)«3
ia(19,t)-3iNEXT
658 RESTORE 656t FOR i-8 TO 15t READ jt
INK i,jiNEXTiDATA 8,18,6,24,2,8,26,26
,15,16,7,9,13,22,2,26
668 PAPER 4tPEN 3
678 LOCATE 1,4
688 PRINT STRIN8I(I9,287)
788 FOR t-5 TO 23
718 LOCATE l,tiPRINT CHRI(217)tLOCATE

19,ttPRINT CHRK287)
721 NEXT
738 LOCATE 1,24
746 PRINT 8TRINGIU9,287) ¡PAPER 8
758 LOCATE 1,1t PEN 7tPRINT ‘SCORE HEN

ACT TOP'iSOSUB 1318i808UB 1338i808U
B 1358tGOSUB 1378
768 FOR t-1 TO 46trx-RND(l)iryRND(l)
trx-(rxU6)+2iry(ry»18)+5
776 CALL lA6H,l8,12,rx,ry,lia(rx,ry)
-4tNEXT

788 FOR t-l TO 2trx-RND(l)tryRND(l)i
rx-(rx»l6)+2try(ry*18)+5
798 CALL »888,18,12,rx,ry,2to(rx,ry)
■5ir(t|8)-rxir(t,l)»ryiNEXT
888 a(x,y)>6tRETURN
818 REH- - - - - - - - - initialiio- - - - - - - - - - -
826 DIH a(2l,25),r(28,l),nl(9l,hi(9h
FÖR t- 1 TO 9inl(t)-'Coaputing with t
ho AMtrad'ihi(t)-588iNEXT
836 ENV l,26,i,5iENT -6,3,l,ltENV 2,1
5rb5
846 DIH kol(7i)«RESTORE 856tF0R t-l T
0 THREAD kol(t) iNEXT
856 DATA i,2,3,4,5,6,7,8,9,6,-,A,clr,
dol,tab,q,a,o,r,t,y,u,i,o,p,l,(,ontor
,capi,a,i,d,4,g,h,J,k,l,*,+,],ih4t,:,
X,c,v,b,n,a,<,>,/,\,Ctrl,copy,opaco,o
ntor,47,48,49,44,45,46,41,42,43,48,ci
r-up,4-*top,cor-14t,cir-dan,cir-rt
868 RETURN
878 REH- - - - - - - nt variabili- - - - - - - - - -
881 x·1Biy-121o(x,y)-Biicori-8iaon-31
act-lic3tdiad-6
898 RETURN
968 REH- - - - - - - - - aipo- - - - - - - - - - -
918 ERASE aiDIH a(26,25)¡RETURN
928 REH- - - - - - - - - puih/cruih- - - - - - - - - - -
936 IF INKEY(dl)<6 THEN RETURN
948 IF INKEY(gll>-l THEN p«x-hq»yia-
-itb-l
958 IF INKEY(hl)>-l THEN p-x+ltq-yta-
ltb-1
968 IF INKEY(ol)>-l THEN p·x¡q■y-lιa·
Itb—1
978 IF INKEY(41I>-1 THEN p-xiq-y+lta-
8tb-l
988 IF p<8 OR p>2l OR q<B OR q>25 THE
N RETURN ELSE IF a(p,q)<>4 THEN RETUR
N
998 IF a(p+a,q+b)-4 THEN 808UB 1838iR
ETURN
1888 SOUND 1,142,96,16,,6t80SUB 1866
1816 RETURN
1628 REH- - - - - - - - - cruih- - - - - - - - - - -
1838 LOCATE p,qtPRINT CHRI(32)ia(p,q)
-I
1648 RETURN
1858 REH- - - - - - - - - -puih- - - - - - - - - - -
1868 a(p,q)-8
1678 pl-p+atqi-q+b
1688 IF a(pl,qll-5 THEN a(p,ql-6ticor
o-Kore*Ni SOUND 131,St SOUND 2,1895,1
25,15,2,,5,SOSIA 131ltS0T0 1188
1696 IF a(pl,ql)>8 THEN a(p,q)-4tS0UN
D 129,8iB0UND l,4895,58,15,2,,31tRETU
RN
UH CALL M6H,p,q,pl,ql,l
1118 p-pltq-qi
1126 CALL WD19

18 Computing With The Amstrad - December 1986

fíawea^ÜÍe'fflMtá

!13l SOTO 1161
1141 REN- - - - - - - option» unu- - - - - - - -
1151 NODE liCALL 6BB4EiCALL HCI2iDRA
N 0,398,4iDRAN 638,398iDRAN 638,Il DRA
N O,OiPEN hLOCATE 4,2:PRINT 'option«

MAU*
1161 RESTORE 121llPEN 2iF0R f I TO 4
1171 READ al
UN LOCATE 3,(t»2)+4
UN PRINT t|* *|it
12N NEXT
1211 DATA 'High Score«','Redefine Kay
»','In«truction«",'Nain Nonu'
1221 PEN 3iLOCATE 4,2liPRINT 'Soloct
Option'
1231 ky·!
1248 al-INKEYI
1258 IF al·'!' THEN 60801? 2858iSOSUB
1648I80T0 1158
1268 IF al>*2' THEN BOSUB 2858i808UB
2228iSOTO 1150
1278 IF af'3* THEN BOSUB 2850i608UB
2458iSOTO 1158
1288 IF al>'4' THEN 60T0 268
12N SOTO 1240
13N REN- - - - - - - - print icon- - - - - - - - - -
1310 il-STRI(»coraliLOCATE 6-LEN(il),
2i PRINT »corn RETURN
1320 REN- - - - - - - - - print top- - - - - - - - - - -
1330 »l»8TRI(hi(l))(LOCATE 20-LEN(»l)
,2iPRINT hid) (RETURN
1340 REN- - - - - - - - - print un- - - - - - - - - - -
1358 il>BTRI(aen)(LOCATE 9-LEN(«l),2«
PRINT aentRETURN
1368 REN- - - - - - - - - print act- - - - - - - - - - -
1378 il«8TRI(act)iLOCATE 13-LEN(»I),2
■ PRINT act I RETURN
1388 REN- - - - - - - cove aonitari- - - - - - - -
1398 FOR n>0 TO 2
14N IF deadM THEN 808UB 56llREN oov
* Mn
1418 fr(n,0)ij»r(n,l)
1428 IF j-B THEN 1488
1438 IF a(i,jl<>5 THEN b"Bir(n,ifbiL
OCATE i,J(PRINT * 'ia(i,j)'8ia-a-li80
TO 1488
1448 fMKxl+dh)
1458 j-j+(j>yHj<yl
1468 IF a(x,yl<>8 THEN doad"l
1478 IF a(i,jfB THEN CALL lAIN,r(n,
a),r(n,l),i,j,2ia(r(n,8),r(n,l)f8ia(
i,jf5ir(n,8fiir(n,if j
1488 NEXT
1498 RETURN
1508 REN- - - - - - - - - - finished- - - - - - - - - - -
ISIS acfacf tia>3i«core>«coro*lN
1528 FOR fl TO 16
1538 FOR »>1 TO S8iNEXT(BORDER tiSOUN
D 129,242,10,IS,,,28iNEXT

1540 BORDER It RETURN
1550 REN- - - - - - - - - daad- - - - - - - - - - -
1560 SOUND 129,1500,100,15,2,0,15
1570 aen«aen-ltdead»8(«»3
1580 CALL M000,x,y,x,y,3
1590 FOR fl TO lOOtBORDER RND«26tINK
8,RND»26iNEXTtCALL IBC82

1600 IF aan>0 THEN RETURN
1610 IF icoraf hl (9) THEN 808UB 1720
1620 SOTO 130
1630 REN- - - - - - - - high acora»- - - - - - - - - -
1640 NODE I1SO8UB 2200
1650 DRAN 0,398,liDRAN 638,398iDRAN 6
38,8iDRAM 0,0
1660 PAPER 3iPEN It LOCATE 14,2tPRINT
'Block Bu«ter«'iPAPER 0
1670 FOR fl TO 9
1680 LOCATE 4,4+1»21 PEN ItPRINT t|iPE
N 3tPRINT ' '|nl(t)|' '¡iPEN 2tNHILE
PO8(IOX31tPRINT '.'|iHENDI PEN liPRIN
T hi(t)
1690 NEXTtPAPER ItPEN OtLOCATE 14,24t
PRINT 'Spaca for Nonu*(PAPER 0
1700 BOSUB 2150
1710 afINKEYliIF al<>' * THEN 1710 E
L8E NODE Oi RETURN
1720 REN- - - - - - - - - - naa high- - - - - - - - - - -
1730 NODE liCALL IBB4EiCALL IBC02
1740 DRAN 0,398,llDRAM 638,398iDRAN 6
38,8(DRAN B,BiPAPER 2
1758 PEN 3IL0CATE 13,4iPRINT* Naa Hlg
h Score '
1768 PAPER BiPEN tiLOCATE ll,16iPRINT
'Ploaio Enter Your Naoe*
1778 PAPER liPEN 3
17B8 LOCATE 18,15(PRINT'- - - - - - - - - - - - - - - -

1798 LOCATE 18,l5ikO"inl(9f"
1880 NHILE INKEYIO"(NEND
1818 NHILE k*OCHRI(13)
1828 IF kl>CHRI(31) AND kK'l' AND LE
N(nl(9))<23 THEN nl(9)-nl(9)+kliPRINT
«1

1838 IF kfCHRf(127) AND LEN(nl(9)l T
HEN nl(9)«LEFTI(nl(9),LEN(nl(9)l-l)iP
RINT CHRI(8)|CHRI(16)|
1848 kMNKEYI
1858 NENDiIF nl(9f" THEN nl(9f'AN0
N,(don't blaae you)'
1868 hi(9f»coroiF0R i«9 TO 2 STEP-1 *
1878 IF hi(D>hi(i-l) THEN kfnKDin
l(ifn»(i-l)inl(l-ll«klihi(i)«hi(i-l)
ihi(l-iftcoro
1888 NEXTiRETURN
1898 REN- - - - - - - - title «croon- - - - - - - - - -
I960 NODE ItCALL IBB4ElCALL HC82
1918 RESTORE 2848
1928 PAPER 3lPEN tiLOCATE 1,4
1938 FOR fl TO 5

1948 READ al ^
1958 PRINT TAB(3)|
1968 FOR p»i TO 37
1978 IF NIDI(al,p,lf'l' THEN PRINT C
HR»(287)I ELSE PRINT CHRI(32)|
1988 NEXT
1998 PRINT
2888 NEXT
2818 PAPER BiPEN tiLOCATE 9,lStPRINT*
NEETS THE ICE NONSTERS!'
2828 FOR fl TO 3888iNEXT
2838 RETURN
2848 DATA 118811101108111811180801108
1118188188,18181818101110100188688101
01010110108,1180101011001010010080011
801010111100,101010101010101001000001
8101010101100,10101110110011100180000
10101118100100
2050 REN -—— clear acreen - - - - - - - -
2060 FOR f40 TO 0 STEP-i
2070 OUT »COO,i
2080 OUT WDB0,t
2090 FDR p-l TO 25·NEXT
2100 NEXT
2110 CL8
2120 OUT IBCOO.l
2130 OUT IBDN,4B
2140 RETURN
2150 FOR fl TO 40
2160 OUT »COO,1
2170 OUT HDN,t
2180 FOR p«l TO 2SiNEXT
2190 NEXTiRETURN
2200 OUT IBC08,1i0UT ABDOO,OiRETURN
2210 REN- - - - - - - - redefine key«- - - - - - - -

2220 NODE OlCALL ABB4EiCALL kBC02
2230 BORDER 14lDRAN 8,398,liDRAN 638,
39SiDRAN 638,0iDRAN O.OiPEN 71 PAPER 4
2240 LOCATE 4,2iPRINT* Redefine Key«
■
2250 PAPER OlPEN 9
2260 LOCATE 3,7iPRINT* up - *|
2270 eMik·-!iNHILE f-iiBOSUB 2400ill
ENDie>k
2280 LOCATE 3,9iPRINT* doan - *|
2290 fOif-liNHILE k-li808UB 24HiN
ENDif-k
2300 LOCATE 3,lliPRINT* left - *|
2310 g-8ik-l iNHILE k-lt808UB 2400iM
ENDig’k
2320 LOCATE 3,13iPRINT'right - *j
2330 h-Oik-liNHILE k·-1 iBOSUB-2400iN
ENDih-k
2340 LOCATE 3,15iPRINT* push - 'j
2350 d»8if-l iNHILE k>-ii808UB 2400iN
ENDid"k

Computing With The Amstrad - December 1986 19

^Mtea^tóe Tifatiti

From Page 19
236« PEN 3IL0CATE 5,28,PRINT ‘Correct
?'

2371 IF 1NKEY(43)>-1 THEN RETURN
2388 IF INKEY (46) >-l THEN 2228
2398 SOTO 2378
2488 RESTORE 2448iF0R a·! TO 71
2418 READ t
2428 IF INKEY(t)>-l THEN k«t,PRINT kt
♦(a)«a«71iNHILE INKEY(tIMiNEND
2438 NEXT)RETURN
2448 DATA 64,65,57,56,49,48,41,48,33,
32,25,24,16,79,68,67,59,58,58,51,43,4
2,35,34,27,26,17,18,78,69,68,61,53,52
,44,45,37,36,29,28,19,21,71,63,62,55,
54,46,38,39,31,38,22,23,9,47,6,18,11,
3,28,12,4,13,14,5,8,7,8,2,1
2458 REN- - - - - - - - initructioni- - - - - - - - - -
2468 NODE liCALL IBB4E1CALL 6BCB2
2478 608UB 2288
2488 BORDER 14iPAPER 3:PEN 2
2498 LOCATE 15,2iPRINT‘ Robot Ron '
2588 PAPER BiPEN 1

2518 PRINTiPRINTiPRINTiPRINTiPRINT *
Robot Ron h» defeated ali h'I» provio
uo‘
2528 PRINT'oppononti bat now ho hai a
at hit catch.’«PRINT
2538 PRINT* Ico «nitori aro the ooot

feared boatti*
2548 PRINT'in the galaxy. And they ar
a oxtreooly'iPRINTiPRINT’dlfficult to
kill.'iPRINT

2558 PRINT* The only My thii can bo
achieved it to’iPRINT'cruih thee by p
uthing an ico cube ovor'iPRINT
2568 PRINT'thoa. SOOD LUCK!'«PRINT
2578 PAPER liPEN 3«L0CATE 14,24«PRINT
'Space for Nona*
2588 808UB 2158
2598 at'INKEYtilF at<>' ' THEN 2598 E
L8E RETURN
2688 REN — ipeed loloction —
2618 PEN 3«L0CATE 3,2tPRINT'8peod So
lection*
2628 RESTORE 2648«F0R t’l TO 5
2638 READ atiLOCATE 3,(2»t)+5,PEN t+5

«PRINT aliNEXT
2648 DATA *t. Hand Breaklng*,*2. Broc
th Taking','3. Nr Average',*4. Slow»
#.','S. The A Toaa ·'
2658 at-INKEY»
2661 IF VALU«) >5 OR VALIaIXl THEN 2
658
2678 xp’VALtalhxpnp-bipodnpilH
2688 RETURN

All the listings from this month s
issue are available on cassette.

See Order Form on Page 61

Look for the new look
Computing With The Amstrad

Available in the first week of February

20 Computing With The Amstrad - December 1986

Grab your paper
pen and ink...
.. . you're going to explore the colourful world of
Amstrad graphics with the help of MICHAEL NOELS

ELCO ME to the colourful
world of the Amstrad
CPC464, and congratu

lations on having such a superb
machine for graphics program
ming.

If you've run any commercial
arcade games, or typed in the
programs from this issue, you've
probably already seen the amazing
graphics effects the CPC464 is
capable of.

However because of the Amstrad's
wide range of graphics and colour
commands, incorporating them into
your own programs can be a little
difficult at first - and the User's
Instructions aren't too helpful.

So here's a gentle-paced, no-non
sense introduction to the ins and outs
of graphics and colour programming
that you won't need a PhD in
computer science to understand.

I have assumed that you know a
little Basic, but don't worry if you
don't - you can pick it up as you go
along. And if you don't happen to
have a colour monitor you can still

take advantage of the techniques
we'll be using.

So switch on your Amstrad, or
reset it if it's already on. To reset it
press the Esc key while holding Ctrl
and Shift down. You should see a blue
screen with the familiar message
appearing in yellow writing.

Let's see how many characters you
can fit onto one line of the screen.
Type:

0123456789
repeatedly, and you'll find that the
screen has a width of exactly 40
characters.

You can actually have three basic
types of screen - these screen types
are known as modes — all with
different screen widths. Enter:

■ode I

and see how many characters wide
the screen is now. (Incidentally, if
you've got a syntax error here, you've
probably missed the space out
between mode and 0.)

As you'll have discovered, mode 0
has 20 characters - rather fat ones at
that. Now try:

■odi 2

Again the screen is cleared, but
this time we get a "skinny" Ready. If
you're up to all the typing, you'll find
that you can fit 80 characters across
the screen.

When you first switch on or reset
you are in
entering:

As you

Mode 1. Prove it now by

■ode 1

can see, we're back to
normal size, and can fit 40 characters
across the screen.

So we've got three modes - 0, 1
and 2. Notice it's not 1, 2 and 3.
Remember, computers always start !►

Computing With The Amstrad - December 1986 21

their counting at zero, not one.
The number of characters across

the screen is not the only difference
between modes - they also differ in
the number of colours they allow on
the screen at once.

Mode 0 allows 16 colours, Mode 1
four and Mode 2 permits two colours.
Notice that the more colours you
have the less characters you get
across the screen, and vice versa.

When you think about it, it makes
sense. You've only got a fixed amount
of memory reserved for the screen, so
if you're keeping track of a lot of
colours you’ve not got much spare for
remembering a lot of characters.

On the other hand, if you decrease
the number of colours you've got to
remember, there's more memory
space available to keep tabs on a
larger number of characters. Table I
summarises it.

If you've been following so far, you
should be in Mode 1. If not reset and
we'll return to writing in yellow on a
blue background, with a screen width
of 40 characters.

Looking at it logically the smallest
number of colours you can have in a
mode is two. If you're going to see
anything on the screen at all you'll
need a foreground colour and a
background colour.

For instance, in order for you to see
the writing on this page, we've

chosen black to be the foreground
colour (that is, the colour that letters
appear in) and white for the
background (the colour of the paper).

Of course our printers could swop
this round - and sometimes do - so
that the letters appear in white on a
black background, giving a sort of
negative.

If we really wanted to go berserk
we could print it in a white foreground
on a white background, only you
wouldn't be able to see it because of
the lack of contrast. (Oddly enough,
this sometimes comes in handy on
the Amstrad.)

At the moment as far as the
CPC464 is concerned I want you to
imagine that we re writing on blue
paper with a pen filled with yellow
coloured ink.

All right, I'll come clean - the
reason for the tortuous last sentence
was that pen, ink and paper are
special words as far as the Amstrad is
concerned. Enter:

pm 2
and you'll see the Ready prompt as*
usual after a direct command, but it's
changed colour. Now it appears in
cyan.

If you try typing in a few
characters - it doesn’t matter which -
they should all appear in cyan, though
still on a blue background.

Next, try:
pin 3

and the writing should now appear in
red. Then enter:

pen 1
and our characters will appear in
yellow again.

Great! We've got three pens to
write with, have we? No. We've
actually got four - each filled with a
different coloured ink - and, as per
usual computer practice, we number
them from 0 to 3.

If we want to change pens, we
simply type pen followed by a space
and then the number of the pen we
want. So:

pin 3
puts out writing in bright red. Type:

pin I
and try some writing. You won't be
able to see a thing because - if you
haven't guessed yet - pen 0 is blue so

you're writing in blue ink on blue
paper.

So how do we get out of it? Well,
press Enter to get you on a new line,
then carefully type:

pen 1
and press Enter again. You should get
back to yellow writing.

If you can't manage this - and it
can be really awkward typing when
you can't see what you're doing -
reset the machine. Now try:

pin 4
Sorry about that! You’re writing in

blue on blue again. Oh well, at least
you know how to get out of it this
time - and you know that pen 4 is the
same as pen 0. Reset your machine
and try:

pen 5
The writing's still in yellow. So pen

5 is the same aspen 1. So what about
pen 6? Try it:

pm &

We're in cyan, the same as pen 2.
No prizes for guessing that:

pen 7
gives you red. Let's explain: When
you switch on or reset, you are in
Mode 1. Now Mode 1 only allows
four colours or inks on the screen at
once. So when you've gone from pen
Oto pen 3 the CPC464 starts again by
making pen 4 equivalent to pen 0 and
so on. Similarly pen 8 is equivalent to
pen 0, and so on.

So in Mode 1, given a pen number,
it's equivalent to the remainder left
when that pen number is divided by 4
(since it's a four colour mode). Hence
pen 13 is equivalent to pen 1. I
always imagine that the pen numbers
are "wrapping round" to the start
again.

If the above maths has you foxed
don't worry. If you don't try anything
fancy, and stick to the numbers 0 to 3
for your Mode 1 pens, you'll be all
right. Table II summarises the colours

Table II: Default colours in Mode 1

22 Computing With The Amstrad - December 1986

associated with the pen numbers.
Now run Program I, which

illustrates the different colours avail
able. You could add the following
lines to illustrate pen 0:

91 pin 0
lii PRINT "Thi» 1« in pm ·"

but, of course, you wouldn't see it.

10 REN PROGRAM I
20 MODE 1
30 PEN 1
40 PRINT "This is in pen 1"
50 PEN 2
60 PRINT "This is in pen 2"
70 PEN 3
80 PRINT "This is in pen 3"

What would happen if we ran it in
Mode 2? Change line 20 to:

20 eode 2

and see.
What happened to pen 2, and

why’s pen 3 yellow? It used to be red I
Well Mode 2 is a two colour mode.
Pen 0 gives us bright blue, pen 1 gives
us bright yellow - then we’ve run out
of available colours, so we start again
as we did when we ran out of colours
in Mode 1 (only then there were four
available).

So pen 2 wraps round to blue and
disappears against the blue back
ground, while pen 3 becomes yellow,
and so on. Table III shows the colours
associated with the pen numbers in
Mode 2.

If we change line 20 to:

20 soda 0

there seems to be little difference
from when you ran it in Mode 1, save
for the fatter characters. Don’t forget,
though, this is a 1 6 colour mode - our
pens should go from 0 to 15.

Program II illustrates the idea -
showing all 1 6 colours- including the
rather natty flashing colours of pens
14 and 15. Table IV shows the

10 REM PROGRAM II
20 MODE 0
30 FOR colour « 0 TO 15
40 PEN colour
50 PRINT "Thii it colour "jcolour
60 NEH colour

Pen number
0
1

Colour
Bright blue
Bright yellow

colours associated with the pen
numbers in Mode 0.

Try changing line 20 to give Modes
1 and 2 and you'll see how in modes
with less colours the pen numbers
wrap around. If you now enter pen
16\

laproper argument
will be hurled back at you. The
CPC464 knows that the biggest pen
number it can possibly have is 1 5, so
it throws pen 16 out. In Modes 1 and
2, as we've seen, it wraps the pen
numbers round, but it still rejects
numbers over 1 5.

So far all our work has been done
on a nice blue background, but we
aren't restricted to this. Let's inves
tigate.

Reset your micro so you are back
in Mode 1. Now so far we've been
writing with pens filled with different
coloured inks - on blue paper. Enter
this:

pipar 3
All of a sudden Ready appears on

red paper. That is, the letters still
appear in yellow, but on a red
background. You see:

paper 3

Pen number Colour
Bright blue
Bright yellow
Bright cyan
Bright red
Bright white
Black
Bright blue
Bright magenta
Cyan
Yellow
Pastel blue
Pink
Bright green
Pastel green
Flashing blue/
bright yellow
Flashing pan
sky blue

^Se^eStperTcoioursir^ModeO

means "write on paper that's the
same colour as the ink in pen 3".

Now, from Table I, pen 3 is bright
red, so paper 3 sets the background
to bright red. Type in some characters
of your own if you don't believe me.
Next try:

paper 2

The ink in pen 2 is bright cyan, so
our writing now appears on cyan
paper. I find this terribly difficult to
read, so let's make it clearer by

Computing With The Amstrad - December 1986 23

changing our foreground colour to
red. Remember how? It's:

pen 3
Paper colour is really quite easy to

use — it works just as pen does, and
follows the same restrictions as to
mode. Just bear in mind: paper n
means the background colour is that
of the ink in pen n.

Notice that so far only the
background of the characters you’ve
typed has been in the new paper-the
rest of the line stays in the old paper.
When you've reached the bottom
line, however, and the new line scrolls
up, the whole of that line will be in the
new paper.

After all, it's got to be in
something, and as it’s brand spanking
new we may as well have it in the new
paper.

There is a quicker way to get the
screen in the new background colour.
Enter:

paper 1 i cli
and the screen will clear to a yellow
background (paper 1) with writing in
the red foreground colour (we're still
in pen 3).

You'll also notice something else if
you haven't already - our yellow
paper is surrounded by a blue border.
You haven't noticed it before because
our background's always been blue,
matching the border.

We'll see later how you can
change the border's colour. In fact
there's not much else you can do with
it - we can't actually write anything
there ...

Before we continue, have a look at
Program III, which ¡Illustrates how

18 REN PROBRAN III
21 MODE I
31 FOR background ■ I TO 15
41 PAPER background
51 CLS
61 PRINT'Thii ii papar "j background
71 PRINTsPRIMT
Bl FOR colour > I TO 15
91 PEN colour
IN PRINT "Thia ia colour "¡colour
111 NEXT colour
121 PRINTiPRINTtPRINT'Prm any kay"
131 dal ay# » INKEY# i IF dtl»y#·" TH
EN BOTO 131
141 NEXT background
151 PAPER I i PEN 1

the various pen and paper combi
nations work.

So far we’ve only seen 1 6 colours.
However, when you bought your
Amstrad you were promised 27.
What's happened to them?

Program IV shows where they've
been hiding. It successively steps the
border through all 27 colours of inks,
as they are known.

IB REM PROGRAM IV
21 NODE 1
31 FOR colour ■ I TO 26
41 BORDER colour
51 LOCATE 16,12
61 PRINT ‘Bordar "; colour
71 FOR dalay · I TO 5N :NEXT dalay
Bl NEXT colour

As you'll have guessed border is
the command that changes the colour
of the border - you simply follow it
with a space and the number of the
colour you want the surround to be.

But beware, these numbers won't
appear to have anything to do with
the numbers you’ve been using for
pen and paper. For example:

bordar I

The border turns black - not blue
as you would expect from pen 0 and
paper 0.

This is a very important point - the
numbers used with pen don't label
colours - they label pens, which just
happen to be filled with "coloured
inks".

Just because pen 3 has so far
always given us red in Mode 1, it
doesn't have to. It's just that, at the
moment, pen 3 happens to be filled
with red ink.

Later on I'll show you how to fill a
pen with, say, blue ink - in fact any
coloured ink from our "palette" of 27
colours.

So the 3 in pen 3 labels the pen,
not the colour of the ink it is filled
with. As in Mode 1 we're allowed four
pens, and hence four corresponding
papers. We can fill these pens with
any four of the 27 - a sort of "perm
any 4 from 27". In fact you can fill all
four pens with the same colour if you
want.

Much the same holds for the other
modes, with their different number of
pens.

Now the micro needs some way of
referring to each of the 27 available
colours. It could, of course, do it in

words - orange, bright red and so on.
Being a computer, it prefers to give

the various coloured inks reference
numbers, as shown in Table V.

As you can see, ink 0 is black and
as the border command uses the ink
number NOT the pen number:

border B

turns the border black - and leaves
the screen entirely alone. You must
use pen or paper to affect the screen.

Next month I'll show you how to fill
the pens with any ink you care to
choose. For now, though, it's
probably best if you just use the inks
that the pens are "supplied" with
when you switch on or reset - the
default inks as they are known. Tables
II, III and IV show them for each
mode.

That should keep you busy enough
until our next issue!

Ink number
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

Colour
Black
Blue
Bright blue
Red
Magenta
Mauve
Bright red
Purple
Bright magenta
Green
Cyan
Sky blue
Yellow
White
Pastel blue
Orange
Pink
Pastel magenta
Br*ght green
Sea green
Bright cyan
Lime green
Pastel green
Pastel cyan
Bright yellow
Pastel yellow
Bright white

Table V: Ink colours

24 Computing With The Amstrad - December 1986

P.D.I.

PUBLIC DOMAIN

With
Shane Kelly

O.K., this month we are going to communicate if it kills you.
On side 1 of the disc you will find several files that are already
configured for the various CPC machines called
MDM73O.DOC which will give you an idea of the functions
that can be had and there are notations where this doc file differs
from the programs supplied. Your recommended course of
action if you are new to comms is to read the docfile, then read
the RS232 manual, then read PROTOCOL. DOC from last
months disc and then try running the program that is already
configured for your AMSTRAD. If you already know all about
comms then skip the above and get on with it! Back to the
novices. For CPC ownwers (hands up you lot, don't be shy!)
try firing up CPM 2.2 or 3.0· and then running
M9CPCALL.COM. This program will run on all CPC's under
both CPM's and it works. Now, there is one slight hitch with
this program - it cannot do split baud rates and as there are now
quite a few bulletin boards that use the 1200/75 format this
would be a useful feature. Enter M9NOSET.COM ! To use
M9NOSET you must set up the baud rate before running it.
Under CPM 2.2 use the setup utility and keep this
permanentlly altered system disc as your comms disc. Under
CPM 3.0 use the SETSIO utility to achieve the same result.

Now you PCW owners, don't get impatient, it's your turn
now. The file for you is MDM8OOO.COM. Now the bad news -
I don't have a PCW so I can't test this for you. If any person

would like to donate a PCW I would certainly take it with
thanks.... no offers eh? Thought not.

Right, well what's the rest of this rubbish on the disc and why
is it so? I don’t know , I just write the column! No, OK (the
editor just hit me over the head and told me to get serious
- he's a bully isn't he?) I'll get on with it. The files on side 1
user 0 are:

M9CPCALL.COM All CPC RANGE modem program.
CPM 2.2 & 3.0 (no split baud rates) This program sets the
baud rate to 300/300 on start up

M9NOSET.COM All CPC Range modem program. CPM
2.0 & 3.0 To obtain split baud rates, set them up before
entering this program.

MDM8OOO.COM A PCW modem program Untested by me
but I am assured it works. CPM 3.0 ON PCW's ONLY! ! ! !
(no split baud rates)

The following files are in user 1 on side 1:

MDM73O.DOC Explains the features and foibles of the
modem progs with notes that show where M7XX and M8XXX
differ.

M7LIB.DOC, M7RUB.MSG, MDM730.MSG, MDM730.NOT
These files are all short notes, messages and doc files to people
who wish to bring up the modem program from scratch.

In user area 2 on side 1 we have:

MODEM.COM, Sripped down version of a modem program.
Handy if you just want to talk between machines.

MODEM.DQC This is a squeezed doc file outlining the
above program.

In case you are having trouble unsqueezing a file on single
drive systems, I use the following method: Copy the squeezed
file to a blank disc. Fire up NSWP (available on PD DISKI)
and then log in the disc with the squeezed file on it, and then
tag it, and subsequently unsqueeze it. NOTE this will only
work if the unsqueezed version + the squeezed version is less in
total length than the space on your disc- use a data disc if
possible !

Now, on side 2 we have all the files you need to bring up a
version of a modem program (MODEM798.COM). I have not
used these files as there was not time before I had to send this
column in. They are included only for the hackers and are not
needed to get a working modem program. I f you only want a
running modem program use the appropriate one as detailed at
the begging of this article. The file M798-AMS.ASM is an
overlay that is configured for a PCW 8512. This was done by
John Dalstead and I know that John used it in its assembled
form so if you want to bring up your own version it should
not be too difficult.

Time to to, but before I do, I'll just say that next month I plan
to bring to you a full featured MACRO ASSEMBLER (Z80
CODE) AND A DISASSEMBLER with a few utilities to
change 8080 code to Z80 code. These are in the pipeline but
no promises ! !

Shane Kelly

Editors Note:
If any readers have any particular requests in the Public Domain
area (or if you have any Public Domain software you’d like to
share with other Amstrad owners) you can contact Shane via
this magazine using the address on Page 34 of this issue. We’d
also like to take this opportunity to thank all those who have
purchased PD Disk 1 and by doing so shown their support for
this series. Please see P. 34 for details on how to order this
month's disk.

Computing With The Amstrad - December 1986 25

M9CPCALL.COM
M9NOSET.COM
MDM8OOO.COM
M9CPCALL.COM
M9NOSET.COM
MDM8OOO.COM
MODEM.COM
MODEM798.COM

Part 2 of COLIN FOSTER'S exploration
of CP/M 2.2 on the Amstrad

IHIS month we'll look at
what the different CCP

______ |(Console Command
Processor) commands do, and
how CP/M organises memory.
First, however, let's go back to
the beginning — always a good
place to start! - and see just what
happens when you type ICPM.

First, Basic hands over control to
the cold boot routine in the BIOS
ROM. (Cold boot is the CP/M term for
the machine being completely reset
and CP/M started up "from cold”.

This routine looks for, and loads,
the boot sector from the system
tracks of the disc in drive A. Don't
worry if you don’t know what these
terms mean - we'll explain them in
later articles.

For now, just take them as
meaning a special place on the disc
(which you can't get at) where the
programs which make up CP/M live.

Anyhow, this sector contains a
short program, 512 bytes long, which
initialises the computer. To do this, it
first loads the configuration sector
from the disc. This contains data put
there by the program SETUP, which
lets you customise the system to your
own requirements.

We'll talk more about how to give
your CP/M go-faster stripes next
month.

Once the boot program has used
this information to set up the
computer as you want it, it passes
control back to the BIOS ROM - to
the warm boot routine, this time.

A warm boot occurs quite fre
quently in CP/M - every time a
program finishes and hands control
back to the system, or whenever you
type Ctrl + C on the keyboard.

What it does is to load the main
parts of CP/M from the disc, the CCP
and BDOS, "log in" the disc to let the
system know what's on it, and hand
over control to the CCP.

Remember the CCP is just a
program which acts as an "interface"
between you and the computer.

Put a copy of your master disc -
NEVER use the original - into drive A,
side 1 up. Next reset the computer by
pressing Ctrl + Shift+Esc and type
Icpm. This performs the cold start,
setting the computer up and loading

A whistlestop
tour of CP/M

the BDOS and CCP from disc.
The CCP tells you that it's alive and

waiting for a command by displaying
the ubiquitous A> prompt.

There are only six commands you
can type in response to this which the
CCP can understand and obey itself -
these are called the resident, or
built-in, commands and can be seen
in Figure I. If you type anything else in
response the CCP assumes that what

It's just a program which
acts as an "interface"
between you and the
micro
you have typed is the name of a
program on disc, and will attempt to
load it into memory and execute it.
These "commands by default" are
called transient commands, because
they change depending on which
programs you have available on the
disc in use.

Whenever CP/M is looking for
input it provides some editing
commands and other facilities.
Ctrl + X deletes everything you have
typed on the line, Ctrl + P will echo all
console output to your printer (typing
Ctrl + P again will turn this off, Ctrl + S
will temporarily pause console output
(restart it by pressing any key) and
Ctrl + C will abort and warm boot.

The first of the built-in commands,
DIR, you’ve probably met already.

Type:
A>dir

and you will get a directory listing of
the files on side 1 of your disc.
(Actually, you could have used dir
instead of DIR as CP/M ignores case.)

This command is the CP/M

equivalent of the Amsdos CAT
command, but as you have probably
noticed, does not tell you the sizes of
files. You will notice a file in the list
called STAT.COM.

Now type:
A>itlt ♦ .»

This is not one of the built-in
commands-the CCP will recognise it
as a transient command and so will
load and run the program STAT.COM.
As you will see from the screen, STAT
gives us a much fuller directory listing
than DIR.

We'll discuss what all the informa
tion meansanothertime. Fornowjust
note that we get a list of files on the
disc in alphabetical order, their sizes
in kilobytes, and the amount of space
still available on the disc.

The disadvantage of STAT is
simply that it is a transient command
- the program STAT.COM must be
present on the disc for the command
to work. DIR will work on any disc.

Notice the *.* we gave STAT as a
parameter on the command line. This
is an example of what CP/M calls an
ambiguous file name, and simply asks
STAT to give us information on all the
files on the disc, whatever they're
called.

/SAVE

The second built-in command we
come to is SAVE. This is dismissed in
Amstrad’s DDI-1 manual as being
"for specialist use only". Well, you are
all about to become "specialists”.
Make sure your disc is write-enabled
with the little white tab pulled fully
OUT and type:

A>mvi 24 trad.cm
The disc will whirr and clank for a

few seconds, then A> will return and
nothing else seems to happen. What

26 Computing With The Amstrad - December 1986

STAT.COM
STAT.COM
STAT.COM

i ep/w

Figure I: Summary of CCP resident commands

DIR Gives a limited directory listing of the files on a disc.
SAVE Saves specified number of pages of memory, starting at

& 100, to disc with the specified name.
REN Renames existing files.
ERA Erases unwanted files. Use with caution!

USER Cnanges current user area.
TYPE Lists Ascii text files to the screen.

&FFFF
&C000
&BECO

&BE80
&AD33
&ADOO
&9F00

&9700

&0100
&0000

________BIOS ROM________

BIOS stack
BIOS extended jumpblock

Firmware and BIOS variables

BIOS jumpblock
BDOS
CCP
TPA

———;^

Figure II: Amstrad CP/Μ memory map

have we done? Well, type:
A>stat (red.com

This is another way of using STAT,
this time with an unambiguous file
name. It will provide information only
on the file we specified.

You will see that we now have a 6k
file on disc called FRED.COM I In fact,
all SAVE does is to copy the number
of pages of memory specified, from
the start of the TPA onwards, into a
disc file with the name we've given.
(A page of memory is 256 bytes.)

Type:
A>fred *.♦

FRED has the same effect as
STAT! Well, it should do - they're
identical. That's because after we first
called STAT and it had executed it
was still present in memory.

The command save 24 fred.com
immediately afterwards simply
copied STAT out of memory to a new
file, FRED.COM (STAT just happens
to be 24 pages long).

/ren ~7
The third built-in command is REN,

or rename. This lets us change the
name of a file by typing:

A>ren <newna»e>=<oldna«e>
So try:

A>ren jim.co«=fred.com
and then use DIR or STAT *.* to check
that FRED.COM has been renamed to
JIM.COM. Run JIM by:

A>ji« ♦.♦
if you need convincing.

/ ERA

The fourth built-in command is

ERA, or erase. BE WARNED - this
one is dangerous! As the name
suggests, it lets us erase and
effectively destroy files which we no
longer want. There is no simple way
to recover something which you have
erased by accident! Type:

A>era ji«.con

and JIM.COM will cease to be.
(Check this with DIR or STAT, as
before.)

/user
The fifth resident command is not

one we'll use much, and I won't go
into it in any detail. The USER
command:

Aluser <n>
where <n> is a number from 0 to 1 5,
allows us to split a disc up into 16
different user areas. Normally we
work in USER 0 without knowing
anything about it.

User areas in standard CP/M 2.2
are virtually useless, so for the
moment we'll ignore them. Feel free
to experiment, however — you'll soon
discover the limitations.

/ TYPE /

The last command in our whistle
stop tour of the CCP is TYPE. This lets
us look at the contents of any files of
Ascii text on the disc. (Ascii is the
standard system of representing
written text in computers.) Type:

Aftype duip.asm
and we can read the text file
containing the assembler source code
for the transient utility DUMP.COM.

TYPE will not let us look at
machine code - for instance .COM

program files. Try it if you want and
see what happens — the results tend
to be spectacular.

Notice also that in general Amsdos
Basic programs cannot be TYPEd
successfully - this is because they are
not stored as Ascii, but use a special
coded format TYPE can't read!

So far I've explained a little about
the different "bits" of CP/M, and what
they each do. Figure II shows where
each of them live in the Amstrad's
memory while CP/M is running.

The bottom 256 bytes, page zero,
make up the system parameter area.
This contains a lot of data useful to
both CP/M and programs.

The next, and largest, area of
memory, starting at &100, is the
transient program area where all
programs, including any you might
write, are loaded by the CCP when
you type a transient command.

Above this is the CCP itself.
However this area of memory is also
available to a program as an "extra''
bit of TPA, as once the CCP has
loaded the program it is no longer
needed.

When the program finishes a warm
boot will occur to reload the CCP in
case it has been overwritten.

Above the CCP is the BDOS, the
main part of the operating system.
This must never be overwritten by a
program else the system will crash.

Above the BDOS lives the BIOS or
machine specific parts of the system
- the various jumpblocks and
variables required to glue things
together, and, at the top, the BIOS
ROM lurking under the screen RAM.
• Next month we'll move on to
look at the programs present on
disc and discover some tricks to
make life easier if you only have
one disc drive.

Computing With The Amstrad - December 1986 27

red.com
FRED.COM
fred.com
FRED.COM
fred.com
FRED.COM
JIM.COM
JIM.COM
DUMP.COM

F you've been following
the series so far, by now
you should be familiar

with our old favourite:
SOUND 1.208,100,5

Hopefully you'll be able to see that
this tells the Amstrad to make a
sound on channel A that lasts for one
second. The pitch of the note will be
200 and its volume will be 5.

As you'll recall, the SOUND
command has the structure:

SOUND channel,pitch,duration,voluae

and by altering these parameters we
alter the resulting noise.

Things are never quite that simple
and last month we saw that the
volume of the note played could be
changed by something called a
volume envelope.

We can have 15 of these volume
envelopes, defined by the ENV
command and called up by attaching
another parameter to the end of our
basic SOUND statement.

So, by combining:

ENV 1,5,2,20
and:

SOUND 1,200,100,5,1
we get a note that lasts for one
second, its volume getting louder as it
plays.

The structure of the ENV com
mand is:

ENV N.P.B.R
where N just labels the envelope, P

Pitch in ...
and give your

tunes some tone
gives the number of steps, Q the
volume change per step and R
specifies how long each step will last.

Again however, things are never
quite that simple and we saw that the
ENV command could take up to 16
parameters in the form:

ENV N,P1,Q1,R1,P2,Q2,R2,
P3,Q3,R3,P4,Q4,R4,
P5.Q5.R5

This surfeit of parameters allows
the volume envelope to have up to
five stages. As if all this wasn't
enough, the volume envelope isn't
the only envelope that can affect our
basic SOUND command.

There's another envelope called

the pitch - or tone - envelope which
affects the pitch of the note - how
high or low it sounds. Before we go
into how it works, let's hear it in
action.

First, define a pitch envelope with:

ENT 1,5,10,20
Next type in:

SOUND 1,200,100,5.0,1
and press Enter.

If you've typed it all in correctly you
should hear a noise that lasts for one
second, getting lower and lower in
pitch.

What's happened is that the final 1
in the SOUND command has called
the pitch envelope labelled 1. This

Table I: Parameter ranges for SOUND command

Channel Pitch Duration
Volume

Volume
Envelope

Pitch
Envelopewithout

envelope
with

envelope

1 =A 0 1 0 0 0 0
Range 2=B to to to to to , to

4=C 4095 32767 7 15 15 15

Default none none 20 4 12 0 0

Table II: Parameter ranges for ENT command

Parameter Number
S

Number of steps
in section

T

Pitch change
per step

V

Time length
of each step

W

Range 0 to 15
0
to

239

-128
to

127

0
to

255

28 Computing With The Amstrad - December 1986

S(Mftd

previously-defined envelope then
varies the pitch of the note produced
by the SOUND statement in line with
the pitch envelope's parameters.

You'll notice that we now have six
parameters following the SOUND
command. Table I shows the new
parameter ranges for the SOUND
command.

As you can see, the pitch envelope
looks very similar to the volume
envelope we dealt with previously. It
takes the form:

ENT S,T,V,N

and as you might guess, S is just a
number that labels the pitch
envelope. You can define up to 15 of
these pitch envelopes so S ranges
from 1 to 1 5. A value of 0 leaves the
note unchanged.

The T, V and W parameters again
mimic those in the volume envelope
but in this case they affect how the
highness or lowness of the note
varies, not its loudness.

The T parameter decides on the
number of steps there are going to be
in the pitch envelope. It can have
values between 0 and 239.

The V parameter is the one that
decides how much the pitch is going
to vary at each step. The pitch can go
either up or down, taking values
between -128 and 127.

Finally the W parameter decides
how long each step is to last.
Measured in hundredths of a second,
it can take values between 0 and 255.
Table II sums up the parameters of
the ENT command and the values
they can take.

Now that we know what these
parameters do, let's see how they
worked on our old favourite sound.
Figure I shows diagramatically the
pitch of the note produced by:

SOUND 1.200,100,5
As you can see, the pitch stays

steady at 200 for the second that the
note lasts.

Now let's define a pitch envelope
with:

ENT 1,5,10,20
and call it up with:

SOUND 1,200,100,5,0,1

As you'll hear, the sound descends
in pitch in five steps during the
second that it plays. Figure II shows
the five steps of the pitch envelope

Partlll of NIGEL PETERS
series on coaxing melodious
sounds from the CPC464

Pitch

250 -
240 -
230 -
220 -
210 -
200---
190 -
180 -
170 -
160 -
1 50 -*-----1--------- 1------- 1------- 1------- 1------- 1------- 1------- 1------- 1------- 1---

0 10 20 30 40 50 60 70 80 90 100
Time
(1/100 sec)

Figure/.-SOUND 1,200,100,5

250-
240-
230-
220 -
210 -
200-
190 -
180 -
170 -

stepl [

step5
step4 I

step3 I
step2 I

160 -
150-1------- !------ r

0 10 20

Figure //: SOUND 1,200,100,5,0,1

graphically.
Let's take a look at this pitch

envelope in detail. The T parameter is
5, ensuring that there will be five
steps, while the W parameter of 20
ensures that each step will last for a
fifth of a second.

ENT 1,5,10,20

“I------1------------ 1-----1------------ 1---------1-------- 1-------- 1—
30 40 50 60 70 80 90 100

Time
(1/100 sec)

The V parameter of 10 means that
at each step 10 is added to the pitch
of the note that is playing. In the case
of:

SOUND 1,200,100,5,0,1
this means that there will be five 0>

Computing With The Amstrad - December 1986 29

notes played with pitches of 210,
220, 230, 240 and 250. The
envelope takes the pitch parameter of
200 from the SOUND command and
successively adds 10 to it. As the
value of the pitch parameter in
creases, so the note gets lower.

Notice that the pitch is incre
mented straight away — the sound
starts at pitch 210, not 200 as you
might expect. The pitch envelope
takes effect immediately. Also notice
that a single SOUND command has
produced five notes courtesy of a
previously-defined pitch envelope.

Before this we would have had to
use five SOUND commands to get
the same effect, as in Program I.

10 REN Pr ograa I
20 SOUND 1,210,28,5
30 SOUND 1,220,20,5
40 SOUND 1,230,28,5
50 SOUND 1,240,20,5
60 SOUND 1,250,20,5

Now however, we can get the
same result by defining a pitch
envelope with:

ENT 1,5,10,28
and calling it using:

SOUND 1,288,188,5,8,1

which is a lot simpler. And the same
envelope can be used to vary the
pitch of other notes in the same way.
Try:

SOUND 1,108,188,5,8,1

which calls the same pitch envelope
but starts at a higher pitch (110).

To sum up so far, we can define a
pitch envelope using ENT. When this
is called, it alters the pitch of the
sound produced by a SOUND
command.

In case you're wondering, you can
have both volume and pitch
envelopes operating at the same
time. Try:

SOUND 1,288,188,5,1,1

and - unless you've cleared the
envelopes out of your micro and have
to re-enter them - you'll hear five
descending notes getting louder as
they get lower. The volume and pitch
envelopes are working in unison.

As I said before, you can have up to

15 pitch envelopes so let's define
another one with:

ENT 2,5,-18,20
Can you guess what its effect will

be before you try it out on a SOUND
command?

The T parameter is 5, so there will
be five steps. Since the W parameter
is 20, this means that each step will
last for 20 hundredths of a second.
The V parameter is -10 so the value
of the pitch parameter will decrease
by 10 for each step of the pitch
envelope.

As the pitch parameter decreases
in value, so the note paradoxically
gets higher in pitch. So we'll get a
note lasting one-second, increasing in
pitch by five stages. Call the envelope
with:

SOUND 1,200,188,5,8,2
and hear for yourself.

Again, one simple pitch envelope
has produced five notes of different
pitch. If we didn't use an envelope we
would have to resort to something
like Program II to achieve our aims.

10 REM Pr ograa 11
20 BOUND 1,190,20,5
30 SOUND 1,180,20,5
40 SOUND 1,170,20,5
50 SOUND 1,160,20,5
60 SOUND 1,150,20,5

As you can see:

SOUND 1,280,108,5,8,2
is much easier.

You'll probably have noticed that
the pitch envelope expects the sound
to last a certain time. So far our
examples have always had the
SOUND command last that amount
of time. Suppose we defined a pitch
envelope with:

ENT 3,5,28,40
As you can see from the T and W

parameters, the envelope expects
that there will be five steps and that
each step will last 40 hundredths of a
second. That means the whole pitch
envelope will last two seconds.

But suppose the SOUND com
mand that invokes the pitch envelope
only has a duration parameter of a
second? In other words, the duration
of the SOUND command is less than

that assumed in the pitch envelope.
What happens?

As with most things in computing,
the answer is to try it and see.
Entering:

SOUND 1,288,188,5,8,3
will give you the answer. The noise
still lasts only one second. The pitch
envelope only gets through two and a
half steps before it's cut off in its
prime.

SOUND 1,208,288,5,8,3
which lasts two seconds, will let you
hear all of the envelope's effects.

But what of the other case, where
the pitch envelope lasts for a shorter
time than the SOUND command?
Enter:

ENT 4,5,-10,18

which defines a pitch envelope that
expects to last half a second. Now call
this newly-created envelope with:

SOUND 1,288,188,5,8,4
which should last one second.

As you can hear, the pitch
envelope lasts for its full half second,
the note rising in pitch. Then for the
remaining half second the note
remains at the final pitch.

The envelope has its way and then
the SOUND command uses up the
remaining time playing at the final
pitch.

One other problem that might crop
up is where the V parameter of a pitch
envelope tries to take the pitch out of
range.

As we know, the value of the pitch
parameter can only range from 0 to
4095. So what happens if the
increase or decrease of pitch in one of
the envelope's steps tries to take it
out of this range?

When we came across a similar
problem in the volume envelope we
saw that the Amstrad just wrapped
round to values that were in range.
This is also the case with the pitch
envelope. Try:

ENT 5,5,-188,188
SOUND 1,388,588,5,8,5

and:

ENT 6,5,188,180
SOUND 1,3808,508,5,0,6

and you'll hear what I mean. The
silent part occurs when the pitch

30 Computing With The Amstrad - December 1986

SwMcl

parameter is equal to zero.
And that's about all for this month

except to inform you that, as ever, the
pitch envelope isn't as simple as I've
made it seem. Like the volume
envelope it can have up to five
sections instead of just the one we've
been using so far.

This means that instead of:

ENT S,T,V,N
the actual definition of a pitch
envelope is:

ENT S,T1,V1,N1,T2,V2,W2,
T3,V3,N3,T4,V4,W4,
T5,V5,W5

Once again we've got a huge beast
with 16 parameters. And once again
let me tell you that it's not as bad as it
looks.

Although we've got five sections
each behaves exactly the way as the
first one we've been looking at. The
difference is that instead of T, V and
W the first section has parameters T1,
V1 and W1, the second T2, V2 and
W2 and so on. Figure III shows how
the parameters relate to the sections.

Although you can have five
sections in a pitch envelope — as
should be obvious from the above -
you don't have to have all five in use.
For illustration let's take a pitch
envelope with three sections, such as
the one defined with:

ENT 1,5,’8, 28,5, -5,28,5,5,21

This pitch envelope has the label 1
and is in three sections lasting a total
of three seconds. Taking each section
in turn you should be able to see what
happens. When you think you've
figured it out call the envelope with:

SOUND 1,288,388,5,8,1

and see if you were right.
Don't be worried by all the

10 REM PROGRAM III
28 REM TONE ENVELOPE
30 DIM T(5),V(5),N(5)
« «HILE -1
58 MODE 1

,2J(W%a<3W^
258 0uration«T(l)«N(l)fT(2)aN(2)+T/xi

“ “’ l'^"'l"l¡"'1'l■‘

388 FOR loop·! TO section,

331 Sii.I.'“’‘l’’ 'I'"’0’1

io ."0”1·' 'i·'1«»1
368 LOCATE 14,23tPRINT "PRESS SPACE"
3 ^ '^^'H.NEND.CLS

S'T"·““ I" *™.
nveiope? , sections
aw««“’“ °" "‘“°"' ” ™

88 CLS

128 LOCATE 38,81 INPUT T(loop)

^.LOCATE 3.181PRINT 'Duration of st

!!! Ü“TE 3B»1B«INPUT N(loop)
1’8 IF N(loop)<0 OR N(looo)>255

your fingers a rest...

?8 FOR loop·! TO sections
3*5i P«INT 'Section* loop

110 LOCATE 3,8:PRINT 'Nuaber of step,

T(lo°P’<0 OR T(loop)>239 THEN
ÎmAiV8'8|PRINT 8PACE«81»6OTO 120

I HECATE 3.13.PRINT "Size of J”

150 LOCATE 38,13iINPUT V(loop)
V(1O°P»<-128 OR V(loop)>127 TH

LOCATE 38,131 PRINT SPACE*(8)î60T0

M ioaKT 8Ma‘’BI'™ ™
L°MTE 14»23‘PRINT 'PRESS SPACE'

218 NHILE INKEY(47)»-1:REND:CLS220 «HILE INKEYIO",^
238 NEXT loop
2« ENTiJdi.vtD.Niuj^^^^^

parameters of the pitch envelope. So
long as you don’t let it know you're
afraid of it you'll be all right.

And to give you practice I leave
you with Program III to help create
your own pitch envelopes and hear
what they're like.

^;::::iT,sNr’'si'--r“‘-.t
(STR# (durati on) H)

Μ «KT -MW l,»,Wlli,rt

Give
All the listings from this month':s
issue are available on cassette.

^e_Order Form on Page 61

And that’s all for this month,
though it’s not the end of our
treatment of envelopes. After all,
there are some very important
questions needing an answer. Such
as why have envelopes in the first
place?

Figure ///: Parameters forali five sections of a pitch envelope

Computing With The Amstrad - December 1986 31

ASCII stands for the American Standard Code for
Information Exchange. The CPC464 can only deal
with numbers. Therefore letters, punctuation
marks and symbols have to be stored in memory
as numbers. Obviously there has to be a list of
which number stands for which symbol and Ascii
is the one used in most micros. You can get the
chart reproduced at the foot of the page using
program I.

Get the facts at your
fingertips .. . with
the third of our ready
reference charts

Ascii Represents characters in
number form.

CHR$ Gives the character from
an Ascii code.

ASC Gives the Ascii code for a
character.

CHR$
The keyword CHR$ allows you to find the character
represented by a particular Ascii code. It takes the form:

Entering:
CHR4(integer)
PRINT CHRt(67l

10 PRINT' Code·}' ■j'Character'
20 FOR loop«33 TO 99
30 PRINT · '|loop;‘ 'CHRi(loop)
40 NEXT loop
50 FOR loop·100 TO 126
60 PRINT loop)' "CHRtdoop)
70 NEXT loop

Program I

10 LET variible=68
20 PRINT CHR*(variabla)

Program II

10 LET a*63
20 LET b»6
30 PRINT CHRKa+b)

gives the letter represented by 67 - which is C. CHR$
can also take a variable inside the brackets. See
Program II.

It can even take an expression, as in Program III.

ASC
The keyword ASC returns the Ascii code of the first
character of a string. It takes the form:

ASC(<tring)
If you want to know the Ascii code for C:

PRINT ASCCC)
will tell you. Note the inverted commas. ASC only
returns the code of the first letter of the string.

PRINT ASC('CD')
only displays 67, the code for C. ASC will accept string
variables inside the brackets:

10 LET •♦«'CD·
20 PRINT ASC(it)

Notice the inverted commas aren't needed with a
string variable.Program III

Code Character
33 !
34
35 1
36 1
37 X
38 &
39
40 (
41)
42 »
43 ♦
«
45
46
47 /
48 0

Code Character
49 1
50 2
51 3
52 4
53 5
54 6
55 7
56 8
57 9
58 :
59 J
60 <
61
62 >
63 ?
64 0

Code Character
65 A
66 B
67 C
68 D
69 E
70 F
71 6
72 H
73 I
74 J
75 K
76 L
77 H
78 N
79 0
80 P

Code Character
81 Q
82 R
83 8
84 T
85 U
86 V
87 M
88 X
89 Y
90 Z
91 t
92 \
93 1
94
95
96

Code Character
97 a
98 b
99 c

100 d
101 a
102 f
103 g
104 h
105 i
106 j
107 It
108 1
109 ■
110 n
111 o
112 p

Code Character
113 q
114 r
115 i
116 t
117 u
118 v
119 n

120 x
121 y
122 z
123 (
124 1
125 }
126

Table I: Ascii codes and their associated characters

32 Computing With The Amstrad - December 1986

GO FORTH
ANY readers, having
learned and used Basic

_____ on the Amstrad, will
have quickly discovered that it is
not the ideal programming lan
guage for all situations and that
some applications, such as
arcade-type games, call for a
faster, more compact means of
programming.

One solution is to write such
programs in machine code, but for
most people this is a very difficult and
time-consuming task. Afar easier and
more enjoyable way is to use one of
the many other languages which are
becoming available for the Amstrad.

These include Pascal, Forth and
Logo and, with the addition of a disc
drive, Lisp, Prolog, Fortran, C and»
many, many more.

Each has its own advantages and
disadvantages in different situations
and, while one language may seem
ideal for one particular application, it
may prove to be too slow or take up
too much memory in others.

What is needed is clearly a good all
rounder, ideally a language which is
fast enough for most requirements
and not too wasteful of memory,
while also being relatively easy to
learn to use.

The language most fitting these
requirements is Forth, and it is not
surprising that it is the most popular
second language among home com
puter users. It is a fast, compact,
general purpose language, ideally
suited to a variety of uses, and despite
its unusual vocabulary and structure
it is by no means difficult to learn.

Forth started life around 1969 and
was originally used to control the
complex movements of large tele
scopes. Since then it has been used
by a wide and varied spectrum of
users for an equally wide variety of
uses.

Its main strength stems from the
fact that although it contains many of
the superior programming features of
high level languages - such as loop
structures and complex conditionals
- it produces extremely compact

...and here’s an
easy introduction

programs which run at high speeds,
typically 10 times as fast as Basic. In
addition to this, you can modify and
extend the language to suit any
application you might require.

Your first task of course, before
you can try out any of the following
examples, will be to type in the
program, which is a complete
implementation of Forth for use on
the Amstrad.

Note that this program does not
provide you with a real version of
Forth, it merely simulates its oper-

STEPHEN DEVINE
points the way to
a second language

ation. It works by converting each
new word into a special internal
format which is then interpreted by
Basic whenever the word is executed.

Since Basic is itself interpreted by
the Amstrad this means that any
Forth programs created will run
extremely slowly. However this
version is almost identical to real
Forth systems and, as such, it will
enable you to experiment with this
powerful language, using the tech
niques outline in this article. You will
then be able to decide if Forth is the
language for you and, if so, you can
then buy one of the commercial
versions available for the Amstrad.

Forth is not without its drawbacks,
and these are mainly due to its
unusual vocabulary and its reversed
method of operation. All commands
in Forth, or words as they are known,
expect to have their arguments — the
variables or numbers which they
operate on — given to them before
each command - not after as is the
case with most languages.

For example, if we wanted to add
two numbers together in Basic and
print out their result, we would use a
statement in the form:

PRINT 3 + B
but in Forth we would write this as:

3 B + .
where the dot (.) is the Forth word for
print. This form of arithmetic is known
as Reverse Polish Notation, or RPN
for short, and operates in conjunction
with an arithmetic stack of numbers.

The way in which Forth interprets
the above command is as follows.
First the numbers to be added are put
on to the stack - first the 3 then the 8
- then the Forth word + is executed.

This, like most Forth words,
operates by taking numbers off the
stack, processing them in some way,
and returning the result to the stack
for use by subsequent words.

In this case the top two numbers
are removed from the stack and
added together and the result of this
addition is then put back on to the
stack.

The next word — . — then removes
the topmost number from the stack
and prints it out to the screen. Forth
then prints the message OK to show
that the statement has been executed
without error. Note that all Forth
words must be separated from each
other by a space.

These operations leave the stack in
exactly the same state as it was
before. This is a very important
feature since it allows subsequent
words to operate on values which
were put on the stack before the
above sequence of instructions was
executed.

The top of the stack always
contains the last number put there

Computing With The Amstrad - December 1986 33

Public Domain Disk Volume 2
Only $19.95

Price includes P & P

Send cheque or order
using Bankcard or
Mastercard

Please quote Catalog
#2802

Strategy Software
P.O. Box 11
Blackmans Bay
Tasmania 7152

[002] 29 4377

Suitable for both CPC and PCW
computers

M9CPCALL.COM

M9NOSET.COM

MDM8OOO.COM

MDM730.DOC

All CPC range modem program. CP/M 2.2 & 3.0 (no split baud rates). This
program sets the baud rate to 300/300 on startup.

All CPC range modem program. CP/M 2.2 & 3.0. To obtain split baud rates, set
them up before entering this program.

A PCW modem program - CP/M 3.0 on PCWs only.

Explains the features and foibles of the modem programs with notes that show
where M7** & M8** differ.

M7BELL.MSG
M7FNK.DOC
M7FNK.NOT
M7LEB.DOC
M7RUB.MSG
MDM730.MSG
MDM730.NOT

MODEM.COM
MODEM.DQC

Files in this group consist short notes, messages and doc files for people
who wish to bring up the modem program from scratch.

Stripped down version - useful for talking between two machines.
Squeezed doc file for above.

34 Computing With The Amstrad - December 1986

M9CPCALL.COM
M9NOSET.COM
MDM8OOO.COM
MODEM.COM

From Page 33
and if a new value is put on to the
stack the old number is pushed down
so that the new value is now the
topmost item.

You may well be wondering how
Forth knew that we only wanted to
add two numbers together and not
three or four or even more. The
answer to this is that the word +
always operates on exactly two
numbers and always returns just one
result. This is also true of most
arithmetic operations in Forth, such
as multiplication and division.

This does not prevent us from
using complex expressions in Forth, it
just means that we have to be careful
in deciding how to express them. For
example, if we wanted Forth to
evaluate the expression:

15 ♦ 2 « 9
we would start by multiplying 2 by 9
to get an intermediate result which
we add to 1 5 to produce the final
value.

An alternative method is to add 1 5
and 2 together and then multiply this
result by 9, but this will give us a
different answer and is not the usual
way to evaluate expressions of this
type - Basic, and most other
languages, would use the first
method.

To multiply 2 by 9 in Forth we must
type:

2 9 *
which will leave the result — 1 8 - on
the top of the stack. This could be
tested by printing the top stack num
ber using . but since we need this
value for the next part of the calcu
lation, we will leave it where it is.

Next we must add 1 5 to the value
on top of the stack by typing:

15 ♦
This leaves the result as the new

top stack item, which can then be
printed out. So our complete evalu
ation becomes:

2 9 » 15 ♦ .
which prints out the correct answer of
33. Note that most versions of Forth
use only whole number, or integer,
arithmetic, with numbers usually in
the range -32768 to +32767, and
cannot normally handle floating-point
or decimal numbers.

This method of arithmetic is not as
complicated as it may seem. The best

16 In the end the complete program i
। might consist of just one word which ।
I need only be typed for all the ’
| associated words to be executed 9

way to learn it is to try using it in Forth
and, after some practice, you will find
it almost as easy to use as normal
arithmetic and just as powerful.

The real power of Forth, however,
comes from being able to add new
words to its vocabulary and to
re-define existing ones.

Supposing you preferred to use
English words for arithmetic, instead
of the symbols +, -, and so on and
would also like to use Basic's PRINT
in place of Forth's dot (.). All you have
to do is type:

i ADD f |
I SUBTRACT - |

and:
i MULTIPLY · |

to create your new arithmetic words,
and:

i PRINT . |
to enable you to use a standard
PRINT command.

Our arithmetic expression could
now be evaluated using:

2 9 MULTIPLY 15 ADD PRINT
which would have exactly the same
effect as the previous example.

In fact the previous example would
still work, since we haven't actually
re-defined the original arithmetic
words but have simply created
additional names for them.

All new Forth words are defined in
this way, by bracketing the state
ments between a colon and semi
colon. The colon indicates to Forth
that you are about to define a new
word and it must be followed by the
word's name.

Next come the actual Forth words
which will be executed when the new
word is used and these may be either
standard words - such as the + and -
of the previous example - or they can
be other new words which have
already been defined. Finally the
whole definition is ended by a
semi-colon. Quite complex words can
be built up in this way, with some

words being used in the definition of
other words, which are themselves
used in other definitions, and so on.

This is exactly how a program is
constructed in Forth - by splitting
each task into a series of smaller
tasks. These can then be defined
easily using standard Forth words,
and all linked together in later
definitions.

In the end the complete program
might consist of just one word which
need only be typed for all the
associated words to be executed.

Forth programs, of course, do not
just consist of arithmetic expressions
- as in the previous examples - and
many other standard words are
provided.

These basic words, which come
with all versions of Forth, are known
as the core vocabulary, and include
the facilities for implementing such
features as variables and loops so
that complex programs may be
written.

You can see the complete vocabu
lary displayed by typing:

»VLI8T
• That's enough to be going on with
this month. Next time weTi see how
these Forth words are used.

1 REM HHHHHHHHH
2 REM · Aaitrad Forth «
3 REM » by *
4 REN * Btaphen Davina *
5 REN *«»«»»··♦»»·#*♦»·
6 REN
10 REN (c) Coaputing «ith the Aaitrad
111 REN Initialisation
111 NODE 2:B0RDER 13HNK 1,IHNK 1,13
121 forthl-CHRKÜI+'Frad Forth VI.1*
131 OPENOUT 'duaay'tMEMORY HIMEM-itCL
OSEOUT
141 taap«liDEFINT a-z
151 DIN N*(13i),p(13t),bag(4ll,H(4B)

>

Computing With The Amstrad - December 1986 35

3D landmarks
YOU CAN FLY AROUND

SUPERB REAL
TIME SIMULATION

MYRDDIN FLIGHT SIMULATION
AMSTRAD CPC 464

FULL SCREEN
DISPLAY

Here are some screens from a typical flight showing the view from the cockpit (top half of screen)
produced as printouts of the actual simulator.

A real time simulation with 3D graphics uses a massive 64000 x 64000 longitude & latitude flying
area, making each flight completely different. Developed under pilot instruction to give realistic
flight effect. The view through the cockpit gives moving 3D graphics.
Comprehensive instrument panel with moving needle meters & digital displays. 15 aircraft types
with varying control sensitivities & speeds of between 100 - 500 knots.
3 runways available for refuelling, take off & landing. Ground and landmark orientation correct with
all flying attitudes (rolls etc.).

The3D graphics are still accurate when
you fly upside down.

3D landmarks you can fly around.

Comes complete with manual & fully
detailed chart of landmarks & airfields.

Joystick or keyboard operation.

Strategy Software
P.O. Box 11
Blackmans Bay
Tasmania 7152
[002] 29 4377

Tape $17.95 Disk $29.95

36 Computing With The Amstrad - December 1986

y ÀMfaape

From Page 35

^(WtloopimjllUIJilU)
HI ir*(l)«'0K':ir*(ll»"8tack Under fl
oa'nr*(2l«"Eipty Stick"
171 ir*(3)·" alriady difinid":ir*(4l«
' - litigai variabli naii":ir*(5)·' -

Bad Nord':ir*(6)»'Stack Full':ir*(7)
«’Return Stack Full"
111 ipHx«ll|:DÌN «(«piaxlisp—I
191 cvn»5BiDIN cvoc*lcvn),dip(cvn,ll
211 FOR i·! TO cvniREÀD cvx#(il,dip(
i,O),d»p(i,i):NEXT
211 cvx*(5)«'."+CHR*(34)
221 uiax»iM:vMX«100:DIN uvx*(uiax)
,uvix * Iuiax »,var *(viax), var (va» 1
231 uvn-t:vrn-1: PRINT forth#!PRINT:
PRINT ir*(I)
240 ON ERROR SOTO 2531
251 REN Input Conandi
261 i*«‘":er»0:LINE INPUT In*:IF In*»
" THEN 691 ELSE IF LEN(ln*)>248 THEN
PRINT'Line too long'iBOTO 261

271 NHILE ABC(In*)»32:IF LEN(ln*)>l T
HEN ln*«RIBHT*(ln*,LEN(In*)-l):NEND E
LSE 691
281 NHILE RI8HT*(ln*,l)=CHR*(32):ln*= *
LEFT*(ln*,LEN(ln*l-l):NEND
291 ln*»UPPER*(ln*):IF ASC(ln*)«A8C("
»") THEN IF LEN(ln*l>l AND LEFT*(ln*,
2)0"« ' THEN 80SUB 1711: IF er THEN 2
61 ELSE a*«""iBOTO 691
3IB ln*«ln*+CHR*(32):x*»":q=l:an«-l:
coip«!
311 NHILE q<LEN(ln*l
321 p-q:NHILE NID*(ln*,q,l)<>" ":q»q+
1iNEND
338 a*«NlD*(ln*,p,q-p):IF a*-":· THEN

IF in-1 AND RI8HT*(ln*,2)»"| " THEN
coip-l:80T0 641 ELSE PRINT"Bad difi

nltion’iBOTO 268
348 FOR i«cvn TO 8 STEP-liIF cvoc*(i)
On* THEN NEXT: BOTO 488
358 IF coip THEN IF m>8 THEN er»3:80
TO 698
368 IF an>«0 THEN IF a*(anl«"VARIABLE
" THEN ir»4:80T0 698
378 x*»x*+CHR*(0l+CHR*(i+14):IF a*<>"
."♦CHR*(34) THEN 648
388 ti»INSTR(q,ln*,CHR*(34)+CHR*(32l)
:IF ti-l THEN PRINT"."jCHR*(34)j" Nit
hout ";CHR*(34):80T0 268
398 x*«x*+NID*(ln*,q+l,ti-q-l)+CHR*(4
)iq»ti+liBOTO 648
488 FOR i«uvn TO 8 STEP-1: IF uvoc*(i)
On* THEN NEXT:SOTO 448
418 IF coip THEN IF an«O THEN er»3:S0
TO 698

428 IF en>>l THEN IF a*(an)«"VARIABLE
" THEN ir»4:60T0 698
438 x*«x*+CHR*(l)+CHR#(i+14hB0T0 648
448 FOR i>vrn TO 8 BTËP-liIF vir*(il<
>n* THEN NEXT:BOTO 488
458 IF coop THEN IF nr«8 THEN er«3:80
TO 691
468 IF an>»0 THEN IF n*(no)«"VARIABLE
' THEN ir»3:B0T0 698
478 x*«x*+CHR*(2)+CHR*(i+14l:BOTO 646
488 FOR i-1 TO LENIn*)
498 IF i·! AND (ASC(a*)«ASC("+'l OR A
SC(n*)«ASC("-")) AND LENIn*)>1 THEN 5
16
586 IF NID*(N*,i,l)<"l" OR MID*(n*,ì,
n>"9" THEN 566
516 NEXT i
528 IF coip AND an«O THEN ir»5iB0T0 6
98
538 IF an>«0 THEN IF n*(an)«'VARIABLE
' THEN er»5:60T0 698
546 IF VAL(n*)>32767 DR VAL(a*)<-3276
7 THEN PRINT'Nuibir "|a*|" too largì"
iBOTO 268
556 x*«x*+CHR*(3)+n*+CHR*(4):60T0 648
568 IF an<0 THEN 598 ELSE IF N*(Nn)O
"VARIABLE" THEN 596
578 IF coip AND n*»n*(1) THEN ir«3:60
TO 698
588 x*-x*+a*+CHR*(4l:B0T0 648
598 IF n*<>";' THEN 611
668 IF coip«8 OR qOLEN(lnt) THEN PRI
NT'Illigal wii-colon":BOTO 268 ELSE
648
618 IF coip THEN IF Nn«S THEN 648
628 IF coip THEN IF n*On*(1) THEN ir
«5:8010 698 ELSE x*»x*+CHR*(l)+CHR*(u
vn+151iBOTO 648
636 ir«5:60T0 698
646 an*an+l:a*(an)=a*
656 NHILE NID*(ln*,q,l)«" ":q*q+l:NEN
D
668 NEND
678 x*«x*+CHR*(l3):ÎF coip THEN 726 E
LSE 766
688 REN Error Routine
698 IF POS(«8)>1 THEN PRINT CHR*(32)j
768 PRINT N*;er*1er):SOTO 268
718 REN Coipile Nin Nord
728 IF an<3 THEN PRINT"Insufficient d
efinition":BOTO 268
738 uvn«uvn+l:uvoc*(uvnl«a*(1):uvex*(
uvn)=x*
748 a#»""IBOTO 698
758 REN Execute Couands
766 ln»0:a*(ln)«x*:er«0
778 60SUB 788:a*>":60T0 696
788 p(ln)«l!ff(ln)«8:df(ln)»8
798 NHILE NID*(a*(ln),p(ln),1)<>CHR*(

13)
BIB claM>ASC(NID*(M*(ln),p(ln),l)):p
(In)«p(ln)+1
816 IF claaiOI THEN 926
821 aord»ASC(NlD*(a*(lnl,p(ln), 1)1-14
:p(ln)«p(ln)+l
838 IF ff(ln)=8 OR aord«37 OR aord»39

OR aord>48 THEN 868
848 IF aord»5 OR aord«32 THEN NHILE A
8C(NID*(a*(ln),p(ln),t))<>4ip(ln)»p(l
n)+t:NENDip(ln)«p(ln)+l
858 BOTO i860
868 IF ip+dip(aord,l)<-l OR sp+dsp(ao
rd,l)>ipiax THEN er«l:60T0 1878
878 IF ip-dip(aord,6K-l THEN er«2:B0
TO 1878
888 ip«sp+dsp(aord,l)
896 IF aord <43 THEN ON aordH 60SUB
1898,1110,1128,1130,1146,1158,1166,11
78,1188,1196,1268,1218,1226,1230,1248
,1258,1268,1278,1288,1298,1388,1318,1
328,1330,1348,1358,1360,1370,1380,139
0,1400,1418,1426,1438,1448,1458,1466,
1478,1488,1490,1506,1510,1528
988 IF aord>42 THEN ON word-42 SOSU
B 1530,1540,1550,1568,1578,1588,1598,
1686,1610,1628,1638,1646,1656,1668,16
76,1688
918 IF er»8 THEN 1868 ELSE 1878
928 IF clauOl THEN 970
938 aord«ASC(NID*(a*(ln),p(ln),1)1-14
:p(ln)*p(ln)+l
948 IF if(In) THEN 1868
958 IF ln<34 THEN ln«ln+l:a*(ln)»uvex
*(aord) ELSE er«7:RETURN
960 BOSUB 780:IF ln=0 OR ir«O THEN 10
60 ELSE RETURN
970 IF claia<>2 THEN 1010
980 aord=ASC(NID*(a*(ln),p(ln),1)1-14
ìpllnl'pllnUl
990 IF ff(ln) THEN 1060
1006 sp«sp+l:s(sp)«4var(aord)i80T0 10
60
1016 IF class<>3 THEN er=l:60T0 1076
1020 p«p(ln):NHILE ASC(NlD*(a*(lnl,p,
II)<>4:p=p+l:NEND
1030 v«VAL(NID*(a*(ln),p(lnl,p-p(ln)+
l)):p(ln)«p+l
1040 IF ff(ln) THEN i860
1050 sp=sp+l:s(sp)«v
1060 NEND
1070 ln«ln-l:RETURN
1088 REN Couand List
1898 teip!«s(sp+l):IF teip!<0 THEN te
ip!«teip!+65536
1160 POKE s(sp+2),tiip!-256*INT(tup!

Computing With The Amstrad - December 1986 37

From Page 37
/256) t POKE I (sp+2)+1,INT(taap! /256) i R
ETURN
1110 s(sp>«s(sp)»s(sp+l)¡RETURN
1120 s(sp)«s(sp)+s(sp+l)¡RETURN
1130 s(sp)«s(sp)-s(sp+l)¡RETURN
1140 PRINT s(sp+l);CHR*(8l;¡RETURN
1150 NHILE ASC(NID*(a*(ln),p(ln),l)K
>4¡PRINT NID*(a*(ln),p(In),l)pp(ln)·
p(ln)+liNEND¡p(ln)«p(ln)+l¡RETURN
1160 s(sp)«INT(s(sp)/s(sp+ll)¡RETURN
1170 t»ap«s(sp)is(sp)«INT(s(sp-l)/s(s
p)) ·. s (sp-1) =s (sp-1) -s (sp) »tup i RETURN
1180 s(sp)«(i(spX0) ¡RETURN
1190 s(sp)«(i(ip)«0)¡RETURN
1200 s(sp)«(s(sp)<s(sp+D) ¡RETURN
1210 s(sp)«(s(sp)»s(sp+l))¡RETURN
1220 i(sp)«(s(sp)>s(sp+i))iRETURN
1230 tup ! «PEEK(s(sp+i) I +256»PEEK(s(s
p+ll+lliIF teap!>32767 THEN taap!«tea
p ! -65536! PRINT tup ! ;CHR*(8) ; : RETURN
ELSE PRINT taap!;CHR*(8);iRETURN
1240 tup ! «PEEK (s (sp) I +256»PEEK (i (ip)
+1X1F tup!>32767 THEN s(sp)«teap!-6
5536¡RETURN ELSE s(sp)«t»ap!¡RETURN
1250 s(sp)«ABS(s(sp))¡RETURN
1260 s(sp)=s(sp) AND s(sp+llsRETURN
1270 s(sp)«PEEK(s(sp)l(RETURN
1280 PRINTiRETURN
1290 ñ¿;u»N
1300 s(sp)*s(sp-l)¡RETURN
1310 PRINT CHR*(s(sp+í)I;¡RETURN
1320 in*=INKEY*iIF in*«" THEN 1320 E
LSE s(sp)«ASC(in*l¡RETURN
1330 s(sp)«MAX(s(spI,s(sp+111¡RETURN
1340 s(sp)«NlN(s(sp),s(sp+lI)¡RETURN
1350 s(spIx-s(sp):RETURN
1360 4(<p)«s(sp) NOD s(sp+l)¡RETURN
1370 s(sp)«s(sp) OR s(sp+l)¡RETURN
1380 i(sp)«s(sp-2l¡RETURN
1390 PRINT" "I¡RETURN
1400 PRINT USINE ’l';SPACE*(s(sp+t)-2
56HNT(s(sp+l1/256)1;¡RETURN
1410 taap»i(sphi(sp)«i(sp-l)is(sp-l)
«tup ¡RETURN
1420 vrn»vrn+i¡var(vrn)«s(sp+l)¡NHILE
ASC(MID*(a*(in),p(lnl,l))<>4¡var*(vr

n)»var*(vrnHNID*(a*(ln),p(lnl ,l)ip(l
n)«p(ln)+t¡NEND¡p(ln)«p(ln)+tíRETURN
1430 s(sp)«s(spl XOR s(sp+l)¡RETURN
1440 bag(ln)«p(ln)¡RETURN
1450 IF s(sp+l)«0 THEN p(ln)«beg(lnh
RETURN-ELSE RETURN
1460 IF s(sp+l)<>0 THEN RETURN ELSE f
Hln)«-liRETURN
1470 IF H(ln) THEN H(ln)«0¡RETURN E
LSE p(ln)«beg(ln)¡RETURN
1480 IF s(spHX>0 THEN RETURN ELSE F

Hln)-URETURN
1490 X(In)«BiRETURN
1500 H(ln)«-1-H(In)¡RETURN
1510 FOR i«B TO uvniuvoc*(i)«"iuvtx*
(i)«"ìNEXTiuvn«-lìPRINT forth*iPRINT
1520 FOR i*0 TD vrn¡var*(i)«"¡var(i)
«0!NEXT«vrn»-hRETURN
1530 taap«s(sp-2)!s(sp-2)«s(sp-1)is(s
p-1)«s(sp)ì s(sp)«taapiRETURN
1540 IF NOT di (In) THEN dfdnl-liloo
p(ln)=p(lnhll(ln)«s(sp+lhli(ln)H(s
p+2)¡RETURN ELSE RETURN
1550 li(ln)«li(ln)+hIF li(lnXlKln)

THEN p(ln)«loop(In)¡RETURN ELSE df(l
n)-0!RETURN
1560 s(sp)-li(In)¡RETURN
1570 CL8 s(sp+l)¡RETURN
1580 DRAN s(sp+2),s(sp+tl¡RETURN
1590 DRANR s(sp+2) ,s(sp+lhRETURN
1600 taap!»FRE("hIF taap¡>32767 THE
N s(sp)»teap!-65536iRETURN ELSE s(sp)
«ttaph RETURN
1610 NOVE s(sp+2),S(sp+l)¡RETURN
1620 ROVER s(sp+2),s(sp+lli RETURN
1630 PLOT s(sp+2),s(sp+l)¡RETURN
1640 PLOTR s(sp+2),s(sp+lli RETURN
1650 s(sp)«RND»32768tRETURN
1660 s(sp)«TEST(s(sp+1),s(sp))iRETURN
1670 $(sp)«TESTR(s(sp+11,s(spI)iRETUR
N
1680 x*XP0Siy«YP06iPL0T 800,B00,s(sp+
1):NOVE x,y!RETURN
1690 REN Process Editing Coaaands
1700 ar«0iN*·"
1710 IF ln*«'»VLIST' THEN FOR i«cvn T
0 0 STEP -liPRINT cvoc*(i);' 'jiNEXT
¡PRINTiRETURN
1720 IF ln*O'*LIST' THEN 1780
1730 FOR i«uvn TO 0 STEP -1
1740 PRINT uvoc*(i)|" ';
1750 IF INKEY*«" THEN 1770
1760 NHILE INKEY*«" ¡NEND
1770 NEXTiPRINT!RETURN
1780 IF LEFT*(ln*,6IO'*LIST " THEN 2
040
1790 N*«RI6HT*(ln*,LEN(ln*)-6)
1800 NHILE ASC(a*)»32ia*«RIBHT*(a*,LE
N(a*)-lhNEND
1810 FOR i«uvn TO 0 STEP -lilF a*Ouv
oc*(il THEN NEXTiPRINT a*;" - Unknoan
word’ ¡er«-h RETURN

1820 x*«uvax*(i)
1830 NHILE ASC(x*X>13
1840 class«ASC(x*)ix*«RIBHT*(x*,LEN(x
*)-l)
1850 IF classOO THEN 1920
1860 aord»A8C(x*)-!4ix*«RI8HT*(x*,LEN
(x*l-t)
1870 PRINT cvoc*(aord);" ’;

1880 IF aord<>5 AND aord<>32 THEN 202
I
1890 NHILE ASC(x*)O4iPRINT LEFIKx*,
l);ix*=RI6HT*(x*,LEN(x*)-l)iNEND
1900 x*«RIGHT*(x*,LEN(x*)-l)iIF word«
5 AND class<>3 THEN PRINT CHR*(34);
1910 PRINT’ ';¡BOTO 2020
1920 IF clasiOl THEN 1960
1930 aord»ASC(x*)-14¡x*«RIBHT*(x*,LEN
(x*)-l)
1940 PRINT uvoc*(Mord);" ';
1950 GOTO 2020
1960 IF class<>2 THEN 2000
1970 aord«ASC(x*)-14¡x*«RIGHT*(x*,LEN
(x*l-l)
1980 PRINT var*(Mord);’ ’;
1998 GOTO 2020
2000 IF class<>3 THEN PRINT er*(ll¡G0
TO 2030
2010 GOTO 1890
2020 NEND
2030 PRINT!RETURN
2040 IF LEFT*(ln*,BI<>'»FORGET ' THEN
2130

2050 w*«RI6HT*(ln*,LEN(ln*)-8)
2060 NHILE ASC(a*)=32ia*«RIGHT*(a*,LE
N(n*)-1)iNEND
2070 FOR i«uvn TO 0 STEP -liIF a*Ouv
oc*(il THEN NEXT!GOTO 2100
2080 FOR j«i TO uvn¡uvoc*(j)«"¡axac*
(j)«"¡NEXT
2090 uvn=i-l¡RETURN
2100 FOR i«vrn TO 0 STEP -liIF a*Ova
r*(i) THEN NEXTiPRINT a*;’ - Unknoan
aord'iar-11 RETURN
2110 FOR j«i TO vrn-l¡var*(j)=var*(j+
lhvar(j)«var(j+lhNEXT
2120 vrn«vrn-l¡RETURN
2130 IF ln*«'*SAVE’ THEN 2470
2140 IF LEFT*(ln*,6IO’»SAVE ’ THEN 2
290
2150 a*«RIBHT*(ln*,LEN(ln*)-6)
2160 NHILE ASC(a*)«32¡w*»RIBHT*(a*,LE
N(a*)-1I¡NEND
2170 dp=lNSTR(a*,'.')
2180 IF dp«0 THEN at*»a*ia2*«'4TH" EL
SE al*«LEFT*(a*,dp-i)ia2*«RIGHT*(a*,L
EN(a*l-dp)
2190 IF al*«" OR LEN(al*)>8 OR LEN(a
2*)>3 THEN 2470
2200 IF a2*·" THEN a2*»’4TH’
2210 a*«al*+".'+a2*
2220 OPENOUT a*
2230 PRINT*9,uvniPRINTI9,vrn
2240 FOR i«0 TO uvniPRINT09,uvoc*(il¡
PRINT09,LEN(uvax*(i))
2250 FOR j«l TO LEN(uvax*(il),PRINTI9
,A8C(NID*(uv8x*(i),j,i));«NEXT j
2260 NEXT i

38 Computing With The Amstrad - December 1986

2278 FOR i«l TO vrmPRINTI9,varl(i)iP
RIHT89,var(i)iMEXT
2288 CLOSEOUT:RETURN
2298 IF lnl«’*L0AD' THEN 2478
2388 IF LEFTI(lnl,6)O'«LDAD * THEN 2
478
2318 wl«RI6HTI(lnl,LEN(lnl)-6)
2328 NHILE ASC(ri)«32iri«RI8HTI(ri,LE
NMMhNEND
2338 dp»lNSTR(ri,'.')
2348 IF dp«8 THEN wlS^$:x2S='4TH' EL
SE wll«LEFTI(ri,dp-t)iH2l»RI8HTI(ri,L
EN(ri)-dp)
2358 IF nit*" OR LENUIIDB OR LENIn
2t)>3 THEN 2478
2368 IF «21«" THEN w2»«'4TH·
2378 ri««ll+'.*+t»2l
2388 OPENIN ri
2396 INPUT»9,uvntINPUTI9,vrn
2488 ERASE uvocl,uv«xl,varl,var
2418 DIN uvocl(u8ax),uvixl(uaax),varl
(v»ax),var(v8ax)
2428 FOR i«8 TO uvnilNPUT«9,uvocl(i)i
lNPUT»9,lux
2438 FDR j«l TO luxi INPUTS, teapiuvex
Ki)«uvexl(i)+CHRI(tHp)iNEXT j

2448 NEXT i
2456 FOR i>6 TO vrmlNPUT89,varili)!I
NPUT»9,var(i):NEXT
2468 CLOSEIN!RETURN
2478 IF lnlO'*VARLIST· THEN PRINT *U
nknown or incoaplita CoMand'itr>-liR
ETURN
2488 FOR i«vrn TO 8 STEP -1
2498 rimari (i)+CHRI (32) +STRI (var (i I)
+SPACEK2) ¡PRINT ri;
2588 IF INKEYI«" THEN 2528
2518 NHILE INKEYI«"¡REND
2520 NEXTiPRINTiRETURN
2538 tr«6iIF ip>186 THEN ip«188iRESUH
E NEXT ELSE ri«"¡RESUME 698
2548 REN Data for Cora Nords
2556 DATA '!',2,-2,·».',2,-!,*+',2,-1,
'-■,2,-1,'.·,8,-1,'?·,8,8,·/·,2,-1,'/
nod·,2,ι,■·<·,l,ι,·ι«',!,·,·<",2,-1
2568 DATA *·',2,-!,'>·,2,-1,'?·,!,-1,
’6',1,8,"ABB",1,6,'AND*,2,-1,’Cl’,I,8
,'CR',8,8,'DROP',1,-1,'DUP',1,1
2576 DATA 'ENIT',1,-1,'KEY',6,1,'MAX'
,2,-1,'NIN',2,-I,'MINUS',1,6,'MOD',2,
-1,"OR*,2,-1,'OVER',2,1
2586 DATA 'SPACE',6,8,'SPACES',1,-1,'

SNAP',2,8,'VARIABLE',1,-1,'XOR',2,-1,
•BESIN’,I,8,’UNTIL’,1,-1
2598 DATA 'NHILE',1,-1,’REPEAT’,8,8,·
IF’,1,-1,’THEN',8,8,’ELSE*,8,6,'FORTH
',8,8,'CLEAR',6,8,'ROT·,3,I,'DO',2,-2
,'LOOP',8,8,'I',8,+1
2686 REN Data for Aastrad Nords
2618 DATA 'CL6',1,-1,'DRÄN',2,-2,'DRA
NR',2,-2,'FRE',8,1,'MOVE',2,-2,'MOVER
',2,-2
2626 DATA 'PL0T',2,-2,'PL0TR',2,-2,'R
ND',6,1,'TEST’,2,-1,'TESTR',2,-1,'6RA
PEN',1,-1

SOFTWARE BOOKS
BONZO SUPER MEDDLER from NEMESIS $ 25.00 (C)
Developed as a dedicated tape to disc utility BSM will transfer all standard
Basic, Binary & ASCII Tiles, BSM will also handle some Headerless files and
Flashloaders. Comes with comprehensive instructions and additional utility
functions.
BONZO CLONE ARRANGER $ 22.00 (C)
Designed primarily for archival purposes BCA will automatically transfer a full
disc to tape. BCA has additional functions including rapid format, directory
utility and a disc copier which can read those "funny" formats using 41 or 42
tracks.
Both BSM & BCA are easily transferred to disc.
BONZO NEWS - $ 2.00
Issue six has 6 pages of news, hints, & tips on the use of BSM & BCA.

PRIDE UTILITIES software prices are for LIMITED TIME
ODD JOB $ 36.50
TRANSMAT (D) $36.50
PRINTER PAC II (D) $36.50
PRINTER PAC II (C) $27.50

F.I.D.O. (D)
SUPERSPRITES (D)
SUPERSPRITES (C)
SYSTEM X
SYSTEM X

(D)
(Q

ONLY
$ 34.00
$ 34.00
$ 24.00
$ 25.00
$ 16.00

EDUCATIONAL

UNDERSTANDING AND EXPANDING YOUR
AMSTRAD: -
Alan Trevennor - $ 32.00
An easy, in depth approach to understanding the Amstrad CPC.
Projects inc. speech Synth./Rom Board/LAN/Eprom Burner etc.
THE AMSTRAD DISC COMPANION: - Simon Williams -
$28.00
Information to help both the new and the experienced user get the
most out of Amsdos and CP/M.
POWERFUL PROGRAMMING FOR AMSTRADS:
- William Johnson - $ 25.00
Shows how to create clean and efficient programs making the
most of the Amstrad features. 464/664/6128.
MASTERING THE AMSTRAD PCW 8256/8512
- John Hughes - $32.00

Covers word processing on the PCW including the use of New
Word. Covers Database/Spreadsheet and Accounting software.
ADVANCED AMSTRAD CPC6I28 COMPUTING
- Ian Sinclair - $ 28.00
Covers many areas including such things as opening and closing
disk files, file maintenance, sorting and amending Tiles as well as
using the additional memory for filing.

EDUCATIONAL SOFTWARE from Little Red Hen
JUNIOR PRIMARY ACTIVITIES (Disk Only)
LOGIC GAMES (7 years & up/Disk only)
WORD GAMES (6 to 12 years/Disk only)
STORY BOOK (middle Primary Word Processor (D)
SPELLING TUTOR (7 to 12/Disk)
NUMBER FACTS (Disk or Cassette)
WORD SEARCH (Disk or Cassette)
* CALENDAR

$ 42.00
$42.00
$ 42.00
$ 42.00
$ 28.00
$ 28.00
$ 28.00

HARDWARE K.D.S. MINI-MAX MODEM 300/300 1200/75 75/1200
Auto Dial/Auto Answer and a built in power suply $ 288.00
K.D.S. SERIAL INTERFACE full communciations package on board in ROM.
No external power supply ...$ 158.00
CONNECTING LEAD for Modem/RS232

(5 pin Din to 25 "D" connector).......

K.D.S. 8-BIT PRINTER PORT $ 54.50
K.D.S. POWER CONTROLLER $135.00
K.D.S. PRINTER "T' SWITCH $ 70.00

kONKSPEEDl<IN(r^^

TRADE ENQUIRIES WELCOME

$ 14.50

ACCESSORIES
P.O. Box 288, Morlnnot 2264, NSW.

Telephone (048) 732754

Computing With The Amstrad - December 1986 39

On your
marks..
get set

GO!

Test your reactions with
ALAN McLACHLAN

IN D out how fast you are

Find
with
timo i

our Amstrad reaction
timer. Are you quicker off

the mark than your friends? Does
your reaction time vary as the day
goes on? Kids, are you faster than
your parents? Type in this listing
and find out.

When you run the program a white
bar will appear on the left of the
screen. Watch it carefully because
soon it's going to change colour,
beeping every time to give you a
warning.

At first it becomes red. Then, like a
set of traffic lights, it will change to
yellow. This tells you to be prepared
because green is the next colour and
you're going to have to react quickly.

As soon as it turns to green (but
not before!) you have to press the
space bar. The Amstrad will then tell
you how fast your reactions are and
what it thinks of them.

II REN reaction tiaer
21 REM adapted by Alan McLachlan
25 BORDER I
31 MODE 1:1NK 1,1:INK 1,24:INK 2,21:1
NK 3,6:PEN 1:D1M at(8):60SUB IM
41 6DSUB 341
51 60SUB 391
61 60SUB 551
71 NHILE INKEY#»":NEND
88 RUN
91 END
IN REN·»*»»»·* initialiH ·»*»«·*·♦♦
HI CLSiLOCATE 14,4:PEN 1: PRINT "REACT
ION TESTER"
121 LOCATE 14,5:PRINT"- - - - - - - - - - - - - - - - - -

131 LOCATE 9,8:PEN 2:PRINT*Uae this p
rogru to toot*
141 LOCATE 14,lB:PRINT”your reactions

151 LOCATE 5,12:PRINT*Th· white bar w
hich «ill appear *
161 LOCATE 8,14:PRINT"on the left of
the ecreen"
171 LOCATE 12,16:PRINT'«ill change cc
lour."
181 LOCATE 4,2I:PEN 3:PRINT"The toque
nee ii RED, YELLON, 6REEN"
185 LOCATE 8,23:PEN 2:PRINT’Prm any
key to continue*

186 NHILE lNKEY*«"*iNEND
187 CLS
191 LOCATE 7,6:PEN 2:PRINT*Each tiae
the colour change«"
211 LOCATE ll,8:PRINT"you «ill hear a
beep."

211 LOCATE 11,12:PEN ItPRINT'Press th
o apace bar*
221 LOCATE 2,14:PRINT'as soon u the
colour changea to green*
231 LOCATE 12,16:PEN 3:PRINT*AT THE T
HIRD BEEP*
241 LOCATE 4,l8:PRINT"Your tiae and r
ating «ill then be given*
251 LOCATE B,23:PEN 2:PRINT"PRE8S ANY

KEY TO START TEST*
261 NHILE INKEY!»":NEND
271 CLS
275 INK 1,26:PEN 1
281 A4«STRIN6*(3,143)
291 PRINTiPRINT:FOR IX· 1 TO 18:PRINT

TAB(8) At:NEXT
311 B4«STR1N6*(3,32)
311 FOR I- I TO 7:READ NtUhNEXT
321 IX>lfRANDOMIZE TINE
331 RETURN
341 REN*»♦♦♦»•»♦NAIT····«·····*···

351 NX»6:60SUB 4N
355 LOCATE 18,ll:PRINT'READY*:S0UND 1
,1M,2I
361 NX-24:GOSUB 481
365 LOCATE 18,11:PRINT"8TEADY*:8OUND
1,75,21
371 NX«18:6OSUB 48l:L0CATE 1B,I1:PRIN
T SPACE!(6):SOUND 1,51,51
381 RETURN
391 REM·»·♦*»♦»*·♦*TEBT»···♦··»··**
481 IF INKEY# <> " THEN 60SUB 51I:RU
N
421 TIMNON-TIME
438 FOR IX" 1 TO 28
435 IF IX >19 OR INKEY(47)>8 THEN 461
441 LOCATE 8,IX:PRINT BhNEH
468 TX"INT(T!NE-TINN0N)/3
478 RETURN
488 REM«HHHH»colour»WHHH»
491 FOR 1»1 TO 1IN+1NT(1IN»RND)+1:N
EXT:INK 1,NX
581 RETURN
518 REN»HHH»too loon«»·»·»*»*
528 CLS:INK 1,24
538 LOCATE 1,18:PRINT'NAIT FOR THE 6R
EEN LI6HT!!!":F0R 1« I TO 18N:NEXT
548 RETURN
«8 REM»*h»»«**hMESSA6E*hh**h*
568 CLS:INK l,24:L0CATE 17,18:PR1NT"Y
OU TOOK "¡LOCATE 7,13:PR1NT TXj * hun
dredthi of a second":FOR DELAY ■ 1 TO
5N:NEXTiLOCATE 8,16:PRINT'You are *

;:PEN 2:PRINT Mi(INTITX/5D
565 IF INT(TX/5)«7 THEN FOR LOOP-1 TO

2B:S0UND l,28,3:S0UND 1,78,3:NEXT
578 FOR x- 1 TO 38N:NEXT
588 LOCATE 8,23:INK 3,26,1:PEN 3:8PEE
D INK 58,2I:PR1NT"PRES8 ANY KEY TO TR
Y A6AIN"
585 NHltE INKEY#-"":NEHD
598 RETURN
686 DATA OUT OF THIS N0RLDJ00 SOOD T
0 BE TRUE,EXCELLENT,VERY 600D,600D,P0
OR,NEARLY ASLEEP,ASLEEP....MAKE UP!!

Give your fingers a rest...
All the listings from this month’s
issue are available on cassette.

See Order Form on Page 61

40 Computing With The Amstrad - December 1986

^ITH most computer sys
tems in commerciel use
there is a facility to

back-up program and data files to
some form of tape device and
have the option to restore the disc
at a later date.

This provides a fairly reliable
back-up for important or archived
data and also frees expensive disc
space.

Archiver is a program for the
Amstrad CPC series which will allow
whole discs to be recorded on tape
and restored at a later date.

If the disc to be archived is fairly
full it is a good idea to use a larger
than normal cassette, such as a C60,
for dumping the data, otherwise you
may run out of tape halfway through.

The program is designed to work
on system discs, but it could be
altered for data discs quite easily by.
those who wish to modify the sector
numbers.

When restoring a disc from tape it
is important to use a disc which has
nothing valuable on it as the first
thing Archiver does when restoring is
to wipe the disc on to which the tape
data is going to be loaded.

To use the routine first type in the
Basic program, Program I, and save it.
If you have an assembler for the
machine code use the source listing -
Program II - and save the object code
as Maincode with the origin at
&9076 - the code length is &8B.

If you do not have an assembler
type in Program III, save it and run it

Back up your
discs - and free
valuable space
Nick Hinde describes Archiver,
a disc to tape spooler for the CPC
to produce the machine code, which
will automatically be saved to disc as
Maincode.

When you run Program I it will load
the machine code and ask you for the
date. It then gives you the options
to archive or restore a disc. If you
choose option 1 - archive a disc - it
will ask for the disc to be archived to
be installed in the drive, and a tape to
be put in the cassette.

It will read the disc and check for
empty spaces and write this informa
tion to the tape. Next it will read all
the bytes from the useful sectors in a
maximum of 45 sector chunks and

save them to tape.
Bear in mind that when you delete

a file from a disc you only remove its
name from the directory. The
program will still be physically there
on the disc, although inaccessible,
and the sectors it occupies will be
read as live during the archiving
process.

If you choose option 2 - restore a
disc - the program will ask for the
archive cassette and a spare disc, and
will then wipe the disc and read the
tape for the sector data. It then
restores the new disc to the same
state as when originally archived.

track
sector
date#

oldate#
logsec
binlen

block
dsn#
start

offset
count

MAIN VARIABLES
Current read/write track number.
Current read/write sector number.

X'»^=^
Number of tape blocks remaining to load/save.
Disc name being archived/restored.

}x«k:»^

Computing With The Amstrad - December 1986 41

From Page 41

120 HENDRY 13473
131 DIN live(360)(REN »»Thia array ho
Ida Hagi for all live aectora»«
141 vn-l.l
1SI Hid>B0lNIND0N!,l,eid,l,4iNIND0N0
2,1,#ld,5,25
lit LOAD 'aalncoda*,19176
171 POKE 690BD,6DDiP0KE 690DB,684iP0K
E 690DC,60S
181 CALL 6908E
198 LOCATE 01,2,llPRINT01,'Nhole Diac
Archi ve/Rutore V*|vn

288 LOCATE l2,2,4iINPUTI2,'Pleace ant
ar data "(datai
218 CLBI2
220 LOCATE l2,2,4iPRlNTI2,'8alact opt
Ion. '
238 LOCATE 02,2,9iPRINT02,'- - - - - - - - - - - -

240 LOCATE 42,2,7iPRINT42,'l. Backup
diac to tapa*
250 LOCATE 42,2,9iPRINTI2,'2. Raatora
diac froa tapa*

260 al-INKEYlilF al-" THEN 260
270 IF alO'l* AND alO‘2* THEN 260
280 ON VALlall 608UB 300,670
290 60T0 210
300 REN wDuap Diac To Tapa««
310 loguc-Oibinlen-O
320 IDI8C.IN1ITAPE.OUT18PEED NRITE 1
330 CL802
340 LOCATE 02,2,4iPRINTI2,'Inaart dh
c and a rewound tapa*
390 LOCATE l2,2,6iPRINT02,'Praaa RECO
RD and PLAY*
360 LOCATE 02,2,8iINPUT02,'Entar file
naaa for tapa 'idanlidanK'+danl
370 LOCATE 02,2,10iPRINT02,'Hit any k
ay whan raady to atart backup....'
380 NHILE INKEYI-"iNENDiCL8»2
390 B08UB 1288iREN «»Chock For Uaad 8
actor« And Put Flaga In Array divel*
»
400 LOCATE 02,2,4iPRINTI2,'Nriting di
ac up to tapa*
410 OPENOUT '!DISCNAP*iREN «»Sava Dia
c Sactor Config' To Tapa»«
420 FOR i'l TO 360iNRITE«9,live(x)iNE
XTiNRITEI9,dateliCL08E0UT
430 track'llaactor>6Siatart-63673i1og
aacO
440 CLSWiLOCATE 42,2,4iPRINTI2,*Raad
ing diac.. '
490 FOR count-0 TO 44

460 logaac-logaac+liIF logaac'361 THE
N 980
470 IF live(logaec)-0 THEN BOSUB 1240
i IF logaac>36i THEN 980 ELSE 470
480 LOCATE 2,12iPRINT'Track '|track|*
Sactor * iaactori

490 offaot'(S12«co«ntHatart
900 BOSUB ÌI6O1REN «»Sat Lo-byta Hi-B
yta For Pokaa··
910 POKE 6907A,lobyte
920 POKE 69078,hibyta
930 POKE 690E9,track 1 POKE 690E4,0iP0K
E 690E6,aactoriP0KE 690E3,0
940 CALL 690BliREN »»Raad Sactor To D
lac 1/0 Buffar»«
990 CALL 19076IREN «»Poaition Sactor
In Cannetta I/O Buffer««
960 oector-oector+liIF eector'74 THEN
eKtor'69itrack'track»l

970 NEXT count
980 CL8I2
990 LOCATE l2,2,4iPRINTI2,'Nriting da
ta to tapa.....'
600 nite-binlen/2048
610 block-FIX(ni:e)
620 IF blockOoiie THEN block-block*!
630 LOCATE 02,2,6iPRINTI2,'8aving *|b
lock|* block· '
640 SAVE dint,B,63474,binlenibinlin-0
690 IF trackOID THEN 440
660 RETURN
670 REN«« Rentora Dine Free Tape»«
680 loguc'Oibinlen'O
690 ITAPE.IN1IDI8C.OUT
700 CL8I2
710 LOCATE 02,2,4iPRINT02,'Innert ree
tore dine and tape*
720 LOCATE 42,2,6iPRINTI2,'Preen PLAY
a
730 LOCATE «2,2,0»PRINT«,'Hit any ke
y ehen ready to atart rentore....'
740 NHILE INKEYI'"lNENDiCL802
790 LOCATE «2,2,4»PR1NT«2,’Plea·· ui
t.. '(LOCATE 02,2,61PRINTO2,'Clearing
rentore dine '18O8UB 1420iCLSI2

760 LOCATE 02,2,4iPRINT02,'Reading di
K aap froa tape*
770 OPENIN 'IDISCNAP'tREN »»Load Diac

Nap Froa Tape·»
780 FOR x'l TO 360iINPUTI9,live(x)iNE
XT xiINPUT09,oldateliCL08EIN
790 total'OiFOR x-1 TO 360
800 IF IheUI't THEN total-total+1
810 NEXT X
820 IF total<49 THEN binlen-62H»tota
1 ELBE binlen'ISAM

830 track'0ia»ctor'69iatart'63474ilog
aec-0
840 CL802IL0CATE 42,2,4iPRlNTI2,'R»ad
ing tape. '
890 ovar-OiFOR x-logaec+l TO 360
860 IF live(x)-l THEN over-over*!
870 NEXT
880 IF ovnr<49 THEN binlen>over«912
890 eiia'binlen/2048
900 block'FIX(else)
910 IF blockOalxe THEN block-block*!
920 LOCATE 42,2,6iPRINT42,'Loading '(
block)■ blocka '
930 LOAD '!',63474ibinlen'O
940 danl'"iF0R title-68807 TO 6B816
990 IF PEEK(title)>31 THEN dont-denl*
CHRKPEEK(titlel)
960 NEXT title
970 CL8I2
980 LOCATE l2,2,4iPRINTI2,'Reetoring
1 '1 deni
990 LOCATE 02,2,6iPRlNT02,'Archived 1
*joldat»t

1000 LOCATE 42,2,BiPRINTI2,'Nriting d
iec. '
1010 FOR count-0 TO 44
1020 logoK-logaec+hlF loga«c-36l TH
EN 1140
1030 IF livedogaecl-O THEN BOSUB 124
OiIF logeec-361 THEN 1140 ELSE 1030
1040 LOCATE 02,2,10iPRINTI2,'Track *|
track)' Sector 'jaector
1090 effect-(912*count)+atart
1060 BOSUB II6O1REN »«Bat Lobyte Hi-B
yta For Pokaa«*
1070 POKE 69083,lobyte
1080 POKE 69084,hibyte
1090 CALL 69082
1100 POKE 690E9,trackiP0KE 690E4,0iP0
KE 690E6,aectoriP0KE 690E3,0
1110 CALL 690C3iREN »«Nrite Sector To
Diac I/O Buffer»«

1120 eector-eector+iilF sector-74 THE
N eector-65itrack-track+l
1130 NEXT count
1140 IF track<>40 THEN 840
1190 RETURN
1160 REN «»LO/HI»·
1170 al-HEXIIoffeet)
1180 lol-NIDI(al,3,2)
1190 hil-N!DI(al,!,2)
1200 hibyt«-VAL('6'+hill
1210 lobyte-VAL(*6'Hol)
1220 binlen-binlen*6200iREN »«Incrou
nt eave length of cau I/O buffer««
1230 RETURN

42 Computing With The Amstrad - December 1986

^ttd£t(f

1241 REH ««Livi Sector Flag Found««
1251 logiec«logiec+l
1261 loctornector+h IF iector«74 THE
N iector«65itrack»track+l
1271 RETURN
1281 REH ««CHECK UNUSED SECTORS««
1298 track’ll aietor«65
1311 LOCATE 12,2,4iPRINT»2,"Chicking
For Unuud Sartori '
1311 FOR loguc-l TO 361
1328 LOCATE 82,2,6(PRINTI2, "Track ')
track)' Sector "jaactor
1338 POKE 698E5,trackiP0KE 698E4,8(P0
KE 698E6,iectoriP0KE 696E3,6
1348 CALL 698BliREH »«read lector·»
1358 POKE 69188,8
1368 CALL 698EAiREH ««laarch routini·
e
1378 live(logiec)-PEEK(691N)
1388 IF livi(logiac)·! THEN LOCATE 82
,2,8iPRINT»2,'Live uctor found' ELSE

LOCATE 12,2,81PRINTI2,'Dead lector f
ound'
1398 iector«iector+liIF iector«74 THE
N i«ctor«65itrack»track+l
1488 NEXT logiec
1418 CLSI2IRETURN
1428 REH ««Nipt Raitore Diac««
1438 FOR X-6BE75 TO 69874(P0KE x,6E5l
NEXT
1448 track«8iiector«65
1458 POKE 698E5,trackiP0KE 698E4,8iP0
KE 698E6,iectoriP0KE 19IE3,8
1468 CALL 698C3(REH ««Nriti Sector»«
1478 iector»iector+hIF iictor»74 THE
N iector«65itrack«track+l
1488 IF track<>48 THEN 80T0 1458
1498 RETURN

Program II

Pau... 2 ORB 69076
90761 .down
9076121 74 90 LD HL,69074
9079(11 00 00 LD DE,60000
907Ci01 00 02 LD BC,60200
907FIED B8 LDDR
98B1IC9 RET
9082i .up
9082(21 00 00 LD HL,60008
9085(11 75 8E LD DE,6BE75
9088(01 00 02 LD BC,60280
908B(ED BO LDIR
908DiC9 RET
90BE(.init
9O8E1DD 21 DD 90 LD IX.690DD

9692(21 DB 98 LD HL,698DB
9895ICD D4 BC CALL 6BCD4
98981DD 75 88 LD (IX+M),L
989B(DD 74 61 LD (IX+«1),H
989E(DD 71 62 LD (IX+B2),C
98A1I21 DC 98 LD HL,698DC
98A4(CD D4 BC CALL 6BCD4
98A7(DD 75 83 LD (IX«83),L
98AAIDD 74 64 LD (IX+04),H
9IAD1DD 71 85 LD (IX+B5),C
98B8(C9 RET
98B1I .read
9881(21 75 BE LD HL,68E75
98B4(ED 58 E4 98 LD DE,(698E4I
98B8(3A E6 98 LD A,(69BE6)
98BB(4F LD C,A
98BC(DF R8T 18
98BDI08 NOP
98BEi98 BUB B
98BF(D2 D5 98 JP NC,698D5
96C2(C9 RET
98C3I .write
98C3i21 75 BE LD HL,6BE75
9BC6(ED 58 E4 98 LD DE,(698E4I
9ICAi3A E6 98 LD A,(696E6)
98CDi4F LD C,A
98CE(DF RBT 18
98CF(E8 RET PO
9806(98 BUB B
98DUD2 D5 98 JP NC,690D5
98D4iC9 RET
98D5I3E FF LD A,6FF
9807(32 E3 98 LD (696E3),A
98DA(C9 RET
9608(88 NOP
9ODC1B8 NOP
9800168 NOP
980E(88 NOP
96DF(80 NOP
98E0(00 NOP
96E1I66 NOP
98E2(88 NOP
9H3iH NOP
98E4(>· NOP
96E5I88 NOP
9IE61M NOP
9IE7(88 NOP
98E8i88 NOP
9BE9(M NOP
98EA(.check
98EAI11 FF 61 LD DE,6B1FF
98EDi21 74 BE LD HL,68E74
98F0(.loop
98F6I23 INC HL
98F1I1B DEC DE
98F2(7B LD A,E

Program III

96F3(B2 OR D
96F4IC8 RET Z
9IF517E LD A,(HL)
98F6IFE E5 CP 6E5
98F8i2B F6 JR Z,loop
98FA:21 N 91 LD HL,69188
96FD(36 81 LD (HL),681
98FF(C9 RET
91H(END

18 REH «« Batic H/code Poker «·
28 HODE 2
38 check»ua«B
48 FOR addreu>l>9876 TO HOFF
58 READ bytit
68 checkiua«checkiuo+VAL(*6'+bytel)
78 POKE addrui,VAL('6'+byte4)
88 NEXT
98 IF chackiua<>15612 THEN CL81PRINT
'DATA Error * Pl can debug "1 END
188 CLSiLOCATE 2,5iPRINT'8aving HAINC
OOE for uie by Prograa I*
118 IDI8C.0UT
128 SAVE *aaincoda*,b,69176,688
138 DATA 21,74,98,11,88,88,81,88
148 DATA 82,ED,88,C9,21,Μ,88,11
158 DATA 75,8E,81,88,82,ED,88,C9
168 DATA DD,21,DD,98,21,DB,98,CD
178 DATA D4,BC,DD,75,88,00,74,81
188 DATA DD,71,82,21,DC,98,CD,D4
198 DATA BC,DD,75,83,00,74,84,DO
288 DATA 71,85,C9,21,75,BE,ED,58
210 DATA E4,98,3A,E6,96,4F,DF,M
228 DATA 98,D2,D5,98,C9,21,75,BE
238 DATA ED,5B,E4,98,3A,E6,98,4F
248 DATA DF,E8,98,D2,D5,98,C9,3E
258 DATA FF,32,E3,98,09,88,80,88
268 DATA 86,68,86,88,88,88,88,88
278 DATA 88,08,68,68,11,FF,81,21
288 DATA 74,BE,23,18,70,02,C8.7E
290 DATA FE,E5,2B,F6,21,00,91,36
300 DATA 01,C9

All the listings from this month's
issue are available on cassette.

See Order Form on Page 61

Computing With The Amstrad - December 1986 43

Help Hoppy through Suffis Grotty
v-

IT'S Christmas Eve, and Santa's
out on. the town doing what
Santa's best at during the festive
season. He's also delivering

presents to the kiddies.
He left home just as it went

dark, but in his rush to get the job
started left quite a few Christmas

x2,y2
x3,y3

Haggy's coordinates.

-Monsters’ coordinates.

Monsters'shape number.

ll1,hH·! High and
H2,hl2 Vmovement.
H3,hl3 J

dir1,dir2TMonSte d^dir^ decrease

w 1» o’ “B,W'

star
score

i = increase x, 2
i direction. 1 4 = decrease y.
y 3 = increase y,*

Nun*e,o,sc^^and *“' °’
End score baseo oi
stars.

hs
na$

screen
ti

High scores.
High score names .
Current screen n“ descends.
Time left beforedarkne^^^^

stars lying .around the place.
That's not unusual, but the

trouble is that the monsters from
the infamous Grotty, that incred
ible lonely dark, dank land of the
unbeliever, have gone out on the
prowl, broken into his house and
stolen the stars to sell on the
"white” market.

You play the part of Haggy,
Santa's right hand witch and
part-time guardian of the Grotty.
Your job is to get the stars back
before anybody finds out they're
missing.

To retrieve the stars you must
enter the Grotty in your jet-pack
powered suit, avoiding all the
Meanies. You have to collect
them all before the mists of
darkness descend, as all caverns
entered thereafter will be pitch
black, and you won't be able to
see your hand in front of your ugly
face.

Good luck Haggy, you're going
to need it.

44 Computing With The Amstrad - December 1986

fameqfáe*%ctot¿¿

1 REH Santas 8rotty
2 REH By A.Chapaan
3 REH Braphics Routine
4 REH By R.A.Waddilove
5 REH(c)Coaputing with th« Rastrad
i ON ERROR BOTO 38810
18 BOSUB 1798:REH U.D.B's
28 BOSUB 2850iREH Initial Set Up
38 60SUB 1650:REH Instructions
48 60SUB 1488:REH Set Up Border I Tit
le
58 60SUB 1428!REH Variables
¿8 60SUB HBBiREH Set Up Screen
78 REMHHHHteNain Loop·»»»»»»»»»«»
88 th»·
98 60SUB 238
188 IF exit·! THEN exit=8:6010 68
118 60SUB 948
128 60SUB 788
138 BOSUB 948
148 IF star=8 THEN POKE 34857,3:POKE
34868,3: IF screen«5 THEN LOCATE 11,2:
PRINT" "¡LOCATE 11,3:PRINT" *
158 IF «tar»19 THEN POKE 36297,3
168 IF star«28 THEN 998
178 IF live«<l THEN 1848
188 ti»ti-l:IF ti<8 THEN ti«8
198 PAPERO!,14iPEN#l,8
288 IF ti>-l THEN LOCATE ll,14,!7:PRI
NTIi,ti
218 IF st«l THEN LOCATE 11,15,14:PAPE
R»l,!4:PEN»l,8:PRINTU,star:st4
228 80T0 78
238 RENHH«H»*Hove KaggyHeWHH»
248 IF INKEY <71108 AND INKEY (63) 08
AND INKEY (47) 08 THEN BOTO 288
258 IF INKEY(71)>8 THEN BOSUB 488:EOT
0 288
268 IF INKEY (63) «8 THEN BOSUB 5Hi60T
0 288
278 IF INKEY(47)«8 THEN BOSUB 688
288 IF j-19 THEN 338
298 IF y>16 THEN 318
388 BOSUB 698:IF PEEK(«+(po+22))«4 TH
EN «tar«star+l¡P0KE(s+lpo+22)),3:st«l
318 IF PEEK(«+(po+22))»3 THEN j«j+lip
o«po+il
328 IF j<28 THEN 368
336 IF loc(screen,2)-8 THEN 368
348 f««creen¡screen*loc(screen,2):60S
UB 696:1F PEEK(s+(x-l))O3 OR PEEK(«+
ll+(x-l))O3 THEN «creen-fiBOTO 366
358 po«i-hj«2iexit·!
366 IF exit>l THEN CALL MN8,x,y,x,y
,3:CALL MNO,x,y+l,x,y+l,3«BOTO 386
376 IF th«! THEN CALL MN6,x,y,i,j,p
iciCALL 6AM0,x,y+l,i,j+l,pic+l ELSE
IF th»· THEN CALL lAO0O,x,y+l,i,j+l,p
ic+hCALL 6AOO0,x,y,i,j,pic

380 x«i:y*j
390 RETURN
400 pic«6:IF i«2 THEN 450
410 SOUND 132,0,15,3,1,4
420 BOSUB 690:IF PEEK(s+po-l)=4 THEN
star=5tar+l¡P0KE (s+po-1),3:st=l ELSE

IF PEEK(s+po+10)=4 THEN star=star+l:
POKE (s+po+10),3:st=l
430 IF PEEK (s+po-1) 03 OR PEEK(s+(po+
10)103 THEN RETURN
440 i=i-l:po=po-l:RETURN
450 IF loc(«creen,4)«O THEN RETURN
460 f»screen:screen»loc(screen,4)
470 BOSUB 690:IF PEEK(s+(po+10))<>3 O
R PEEK(s+(po+21))<>3 THEN screen=f:RE
TURN
480 po«po-l
490 i»12:j«j-l:exit»l:RETURN
500 pic«4:IF i«12 THEN 550
510 SOUND 132,0,15,3,1,4
520 BOSUB 690:IF PEEK(s+po+l)=4 THEN
star»star+l:POKE (s+po+1),3:st=l ELSE

IF PEEK(s+(po+ll)+l)=4 THEN star«sta
r+liPOKE (s+(po+ll)+l),3:st=l
530 IF PEEK(s+po+l)<>3 OR PEEK($+(po+
12)103 THEN RETURN
540 i=i+l¡po=po+l:RETURN
550 IF loc(«creen,3l»0 THEN RETURN
560 f=screen:screen=loc(screen,3)
570 BOSUB 690: IF PEEK(s+(po-10))O3 O
R PEEK(s+(po+l))03 THEN screen«f:RET
URN
580 po«po~10
590 i«2:exit»l:RETURN
600 SOUND 130,0,15,18,3,0,1:IF j=2 TH
EN 640
610 BOSUB 690:IF PEEK(s+(po-ll))«4 TH
EN star«star+l¡P0KE(s+(po-ll)),3:st»l
620 IF PEEK(«+(po-ll))<>3 THEN RETURN
630 j»j-2:po«po-22:th«l:RETURN
640 IF loc(«creen,!)«O THEN RETURN
650 {■«creen:sereen«loc(«creen,i)
660 BOSUB 690:IF PEEK(s+(198+(x-l)))<
>3 OR PEEK(«+(187+(x-l)l)O3 THEN «cr
een«fiRETURN
670 po»176+(i-l)
680 j«!8:exifliRETURN
690 ««33999+((«creen-!)*209):RETURN
700 REN*HHH+Nove hazards·»*»*»»»**
710 LET x4»xl:il»x!:y4»yl:jl«yhhl«hl
l:dir»dirl¡ll»lll
720 ON dirl BOSUB 860,880,900,920
730 CALL lA0O0,xl,yl,il,jl,gral
740 xl«il:yl»jl:dirl«dir
750 IF x2=0 THEN RETURN
760 LET x4-x2:il«x2:y4»y2:jl«y2:hl*hl
2:dir«dir2:ll«112
770 ON dir2 BOSUB 860,880,900,920
780 CALL 6A0H,x2,y2,il,jl,gra2

790 x2»il:y2«jl:dir2«dir
800 IF x3=0 THEN RETURN ·
810 LET X4«x3:il=x3:y4=y3:jl=y3:hl=hl
3:dir=dir3:ll=113
820 ON dir3 BOSUB 860,880,900,920
830 CALL lA000,x3,y3,il,jl,gra3
840 x3=il:y3=jl:dir3=dir
850 RETURN
860 ii«x4+l:IF il=hl THEN dir=2:lF se
reen=2 THEN jl»jl+l ELSE IF screen«!!

OR screen=13 THEN il«ll:dir=l
870 RETURN
880 il«x4-l:IF il»ll THEN dir=l:lF sc
reen=2 THEN jl=jl-l
890 RETURN
900 jl»y4+l:IF jl«hl THEN dir=4
910 RETURN
920 jl=y4-l:lF jl=ll THEN dir»3
930 RETURN
940 IF (x=xl AND (y=yl OR y+l=yi)) OR

(x«x2 AND (y=y2 OR y+l«y2)l OR (x=x3
AND (y=y3 OR y+l»y3)> THEN BOSUB 960

950 RETURN
960 lives=lives-l:IF lives<! THEN RET
URN
970 OUT lBCN,BtOUT 6BD00.1:SOUND 130
,0,50,15,l,l,3:L0CATE >l,13+lives,20:
PAPER ll,14:PRINT»l," '¡LOCATE 11,13+
lives,21:PRINTIl," ":OUT lBC00,8:0UT
66000,0
980 RETURN
990 REN*H»«HCongratul at i ons»»»»·**»
1008 RESTORE 1030:FOR f*l TO 24:READ
n:SOUND 4,n,20,15,l:NEXT
1010 LET score«(star»100)+(ti+2)
1020 PRINT STRIN64I32,11)¡LOCATE 2,7:
PRINT'NELL DONE":FOR {«1 TO 2000¡NEXT

{¡BOTO 2870
1030 DATA 60,53,47,45,60,0,45,47,45,4
0,53,0,53,47,45,36,40,40,45,45,47,53,
47,60
1040 REN»»»«Hw«End of gaae»«»*»«»»»
«
1050 LOCATE i-l,j-l:PEN 3:PRINT CHRK
236):LDCATE i-l,j:PRINT CHR4(236)
1060 FOR f=l TO 200!NEXT
1070 SOUND 132,0,15,15,0,0,1
1080 LOCATE i-1,j-1: PRINT CHR»(235):L
OCATE i-l,j¡PRINT CHR4I235)
1090 SOUND 132,0,15,11,0,0,1
1100 FOR f«l TO 200:NEXT
1110 LOCATE i-l,j-l:PRINT CHRK234HL
OCATE i-l,j:PRINT CHRI(234)¡SOUND 132
,0,15,8,0,0,1
1120 FOR f«i TO 200¡NEXT
1130 LOCATE i-l,j-l:PRINT" "¡LOCATE i
-l,j¡PRINT" '¡FOR f=l TO 2M:NEXT
1140 FOR g*l TO 2¡REST0RE 1160:F0R f=
1 TO IhREAD d,n¡SOUND 1 ,n,d,7:SOUND

46 Computing With The Amstrad - December 1986

(fame o^táe'JfaHttÁ·

4,n+2,d,7!S0UND 5,8,3,»¡NEXT f,g
1158 LET score® (star«lN)
1168 DATA 58,1816,37,1816,12,1816,58,
1816,25,858,25,899,25,899,25,1816,25,
1816,25,1136,188,1816
1178 PRINT STRING!(48,11)¡LOCATE 2,7:
PRINT'GANE OVER":FOR f*l TO 2000:NEXT
fi60T0 2878

1188 RENHHHHSet Up Screen«»»»«»»*
*
1198 PAPER 8:CLS
1288 IF ti-8 THEN GOTO 1248
1218 IF screen>6 AND screen<12 THEN R
ESTORE 2348 ELSE RESTORE 2198
1228 FOR F=8 TO 159;REA0 n!tPOKE »18
O+f,VAL('i'+n!):NEXT f
1238 LET 5=33999+((screen-1)*289):FOR
f=2 TO 20:FOR g=2 TO 12:s=s+l:CALL 6

A00O,g,f,g,f,PEEK(s):NEXT g,f
1248 LOCATEI1,2,22:PAPER»1,1I:PENI1,4
:PRINTIl,STRIN6!(ll,' "):LOCATE 11,2,
22:PRINT»l,sn!(screen):PEN 1
1258 RESTORE 2248
1268 FOR f=8 TO 31:READ nt:POKE »188
+f,VAL('L'+n!):NEXT f
1278 IF screen>ll THEN GOSUB 1318 ELS
E 60SUB 1388
1288 GOSUB 1348
1298 RETURN
1388 addr=»188: RESTORE 2288: GOSUB 13
28::addr=»!28:RESTORE 2298:60SUB 132
0:addr=M140: RESTORE 2388:80SUB 1328:
RETURN
1318 addr=»«0: RESTORE 231l:60SUB 13
28:addr=»12B:REST0RE 2328:8OSUB 1328
:addr=M140: RESTORE 233l:60SUB 1328:R
ETURN
1328 FOR f«0 TO 32:READ n!:POKE addr+
f,VAL('l'+n!):NEXT f
1338 RETURN
1348 no=((screen-l)»18)-5
1358 yl=ene(no+(6)):xl=ene(no+(6)+l)
1368 gral=ene(no+(6)+2):dirl=ene(no+(
6)+3):IH=ene(no+(6)+4):hll=ene(no+(6
)+5)
1378 y2=ene(no+(12)):x2=ene(no+(12)+l
)
1388 gra2=ene(no+(12)+2):dir2«ene(no+
(12)+3):112=ene(no+(12)+4):hl2=ene(no
+(12)+5I
1398 y3=ene(no+(18)):x3=ene(no+(«)+l
)
1488 gra3=ene(no+(18)+2):dir3=»ne(no+
(18)+3):113aene(no+(18)+4):hl3=ene(no
+(18)+5I
1418 RETURN
1428 REN»***»*»«Vari ab 1 es*«**«««««»»«
1430 screen8« livei’7
1448 x=6:y=15:i=6:j=15

1450 star=0:pic=4:score=8
1468 ti=28B0:po=148
1470 RETURN
1488 REM»««*Set Up Screen border«»»»«
1490 NODE 8
1588 LOCATE 1,1¡PAPER li PEN 3:PRINT S
TRING!(20,CHR!(240)1
1518 FOR f=2 TO 22:L0CATE l,f¡PRINT C
HR!(240):LOCATE 13,f:PRINT CHR!(248):
LOCATE 20,f¡PRINT CHR!(240)¡NEXT
1520 LOCATE 1,23:PRINT STRING!(20,CHR
!(240))¡LOCATE 1,2«PRINT STRIN6!(12,
CHR!(240)):LOCATE 14,22:PRINT STRING!
(6,CHR!(240))
1530 PAPER 15:F0R (=2 TO iliLOCATE 14
, f: PRINT STRING!(6,CHR!(238))t NEXT
1548 LOCATE 14,12:PAPER 1:PEN 3:PRINT
STRING!(6,CHR!(248)):PAPER 2

1558 PEN 3:L0CATE 14,2:PRINT CHR!(241
)¡LOCATE 14,3:PR1NT CHR!(242)CHR!(243
)¡LOCATE 14,4îPRINT ' 'CHR!(244)CHR!(
245)
1568 LOCATE 14,5¡PRINT CHR!(249)' 'CH
R!(246)CHR!(247)¡LOCATE 14,6:PRINT CH
R!(258)CHR!(251)' 'CHR!(248)CHR!(243)
¡LOCATE 18,7:PRINT CHR!(244)CHR!(241)
¡LOCATE 19,8:PRINT CHR!(242)
1578 LOCATE 15,7¡PRINT CHR!(252)CHR!(
253)' '!LOCATE 16,8¡PRINT CHR!(254)CH
R!(247)" '¡LOCATE 17,9:PRINT CHR!(248
)CHR!(247)' '¡LOCATE 18,18¡PRINT CHR!
(248)CHR!(255)¡LOCATE 19,lliPRINT CHR
1(239)
1588 FOR M3 TO 21 ¡PAPER 14:LOCATE!
4,(¡PRINT STRING!(6,' ')¡NEXT:LOCATE
2,22¡PAPER «¡PRINT STRING!«!,' ')
1590 LOCATE 14,13:PAPER UPEN 5¡PRINT
■STARS:'
1608 LOCATE 14,19:PRINT'SUITS:'
16« LOCATE 14,16:PRINT' TINE '
1628 FOR f=i TO 6:CALL »888,13+1,28,
13+4,28,4¡CALL »080,13+4,21, !3+f,21,
5¡NEXT
1638 HINDOO 81,2,12,2,28:NIND0N SNAP
0,1
1640 RETURN
1650 REN««*««««*««Instructions»·»«»»«
1660 NODE «INK 14,15:INK 15,24:INK 1
,18:INK 12,2,26
1670 LOCATE 1,1:PEN 1:PAPER 3:PRINT S
TR«6!(40,CHR!(240)):FOR (=2 TO 5:L0C
ATE 1,«PRINT CHR!(240)¡LOCATE 40,«P
RINT CHR!(240)¡NEXT {¡LOCATE 1,6:PRIN
T STRING!(40,CHR!(240I)
1680 LOCATE 15,3:PEN 3iPAPER 0:PRINT*
SANTAS GROTTY'¡LOCATE 15,4»PEN 2:PRIN
T STRIN6!(13,CHR!(13D)
1698 LOCATE 1,8
1788 PEN «PRINT'Guide Haggy around t

he caverns of SantasGrotty and codec
t all the stars which Santa has left
behind.'

17« PEN 3:PRINT*Beware of all who ao
ve as they are very dangerous and wil
1 destroy one of your suits every ti
ae you hit the*.
1720 PEN 2:PRINT*Nhen the tiae counte
r reaches zero the aists of darkness
will descend leaving new caverns in

visible.'
1730 LOCATE 17,18:PEN 3»PR1NT'THE KEY
S'iLOCATE 17,19iPEN 2»PRINT STRING!(8
,CHR!(13D)
1740 LOCATE 1,21:PEN «PRINT"!'-LEFT

'¡¡PEN 2:PRINT"<SPACE>'-THRUST
•;:PEN 3:PRINT"X'-RIGHT'
1758 LOCATE 1,22¡PAPER 3:PEN «PRINT
STRIN6!(48,CHR!(248))
1760 LOCATE 1,23:PRINT CHR!(240):LOCA
TE 40,23:PRINT CHR!(240)¡LOCATE 1,24:
PRINT STRING!(40,CHR!(240))
1770 LOCATE 9,23:PEN 3:PAPER 0:PRINT'
Press (SPACE) to continue..'
1788 GOSUB 2658:60T0 2878
1798 REN*««*»*»»*«*U.D.Gs*«*»«««««*««
1795 ON ERROR GOTO 1885
1880 SYNBOL AFTER 230
1885 ON ERROR GOTO 38808
1810 SYNBOL 240,66,165,90,60,68,90,16
5,66
1820 SYNBOL 241,126,255,255,231,226,2
24,224,254
1830 SYNBOL 242,255,127,7,71,231,255,
255,126
1840 SYNBOL 243,24,60,126,255,231,231
,231,231
1850 SYNBOL 244,255,231,231,231,231,2
31,231,102
1860 SYNBOL 245,0,24,60,126,231,231,2
31,231
1870 SYNBOL 246,231,231,231,231,231,2
31,231,66
1880 SYNBOL 247,0,56,56,56,254,254,56
,56
1890 SYNBOL 248,56,56,56,56,57,63,62,
60
1900 SYNBOL 249,126,255,255,230,224,2
24,224,224
19« SYNBOL 250,224,239,239,230,230,2
54,254,124
1920 SYNBOL 251,62,127,231,231,231,25
5,254,240
1930 SYNBOL 252,248,248,236,236,230,2
30,227,227·
1940 SYNBOL 253,24,60,126,231,231,231
,231,231
1950 SYNBOL 254,231,231,231,231,231,1
26,60,24

Computing With The Amstrad - December 1986 47

1961 SYMBOL 255,195,199,231,238,124,6
1,28,28
1978 SYMBOL 239,28,28,56,48,112,96,22
4,192
1988 SYMBOL 238,254,254,254,8,239,239
,239,6
1998 SYMBOL 237,146,84,56,254,56,84,1
46,8
2888 SYMBOL 236,144,78,16,132,66,28,8
6,137
2618 SYMBOL 235,8,68,8,136,1,16,132,1
2828 SYMBOL 234,8,8,34,8,8,8,65,8
2638 SYMBOL 233,198,165,198,165,6,40,
48,16
2848 RETURN
2658 RENHHHtlnitial Sit Up«»»»»»»
2868 INK 8,8:B0RDER 8:PAPER BsCLSsLOC
ATE 15,18îPEN 2iPRINT’PLEASE NAIT!!'
2878 RESTORE 2148
2886 MEMORY H4CFicheckt
2098 ENV 3,3,2,2,3,-2,2:ENT 4,5,-18,2
8,l,6,5iENT 1,38,18,1:ENV 1,18,-1,2
2180 FOR f*8 TO 98
2110 READ nlsPOKE MOOO+f^ALCi'+nf)
2120 chick-check+VAL(T+nl)
2138 NEH
2148 DATA dd,71,88,87,87,87,87,87,32,
47,16,26,c8,dd,7i,84,3d,87,87,64,11,5
l,M,dd,46,82,85,19,16,fd,iS,26,cl,dd
2150 DATA 7i,88,3d,87,87,64,11,50,80,
dd,46,06,85,19,18,4d,11,4d,07,86,08,3
6,08,23,36,80,23,36,00,23,36,00
2160 DATA 19,10,42,11,11,00,11,86,08,
11,77,13,23,11,77,13,23,11,77,13,23,1
i,77,13,78,81,4d,07,09,47,10,e9,c9
2170 IF check<>7948 THEN LOCATE 18,10
sPRINT'ERROR IN DATA'iPRINT CHRI(7hE
ND
2180 RESTORE 2240iF0R 4-0 TO 128:READ

nltPOKE MlBOH.VALd’+nlljNEH
2190 DATA cd,cd,cd,cd,61,61,b4,95,b4,
95,95,b4,cd,b4,61,61,95,cd,95,61,cd,8
0,cd,80,48,80,48,80,48,80,88,80
2200 DATA c4,c4,c4,c4,44,ct,cd,d4,95,
d4,d4,d4,cd,ci,cd,d4,b4,94,74,ci,c4,c
4,c4,c4,d4,cd,94,ei,d4,74,ci,d5
2210 DATA 6i,cc,cc,9d,3d,cc,cc,3e,3c,
6e,9d,3c,3c,6e,9d,3c,3c,6e,9d,3c,3c,6
i,9d,3c,3d,cc,cc,3t,6i,cc,cc,9d
2220 DATA 00,00,08,00,00,00,00,08,00,
00,00,00,00,00, Μ, 88,00,00,00,00,00,0
0, N,00,00,00,06,00, H, 00,00,08
2238 DATA 22,11,N,22,11,11,11,88,H,
33,22,80,33,33,33,22,88,33,22,08,11,1
1,11,80,22,11,H,22,Μ,88,H,88
2241 DATA 00,38,28,86,38,38,38,26,75,
25,88,20,71,64,cc,20,75,64,88,20,35,3
6,88,20,10,30,38,20,18,30,20,80

2250 DATA 10,71,28,00,31,71,20,00,34,
71,43,16,34,38,20,00,34,30,20,00,31,3
0,38,20,00,00,10,20,00,00,40,c0
2260 DATA 00,10,30,00,10,30,30,30,10,
44,la,ba,10,cc,98,b2,10,44,98,ba,10,4
4,30,31,10,30,30,20,00,10,30,20
2270 DATA 00,10,b2,20,00,10,b2,35,d9,
43,b2,34,00,10,30,34,00,10,30,34,10,3
0,30,35,10,20,00,00,cO,80,00,00
2288 DATA 00,51,12,08,80,43,43,00,51,
ab,57,12,34,31,35,14,24,04,04,24,05,8
4,44,01,00,81,45,88,80,81,45,08
2298 DATA 08,04,88,04,04,08,04,08,04,
11,55,08,08,00,00,84,04,44,80,88,04,0
8,04,08,0c,04,08,0c,08,00,00,04
2300 DATA 20,00,00,10,10,00,00,20,30,
11,25,30,25,04,04,11,30,11,25,30,10,3
0,30,20,00,34,34,00,44,ee,dd,88
2310 DATA 00,00,00,00,00,30,00,00,10,
30,20,00,30,71,64,cc,30,30,64,cc,10,3
0,20,00,00,30,00,00,00,30,20,00
2328 DATA 10,25,30,06,30,25,30,20,30,
25,30,20,30,25,04,20,30,30,30,20,30,3
0,30,20,30,30,30,20,30,30,30,25
2330 DATA 40,c0,c0,80,80,00,00,4O,cc,
88,44,cc,d5,10,00,ei,80,10,00,40,80,1
0,30,40,95,00,00,40,95,34,6a,c0
2340 DATA Od,60,00,0i,01,61,05,Id,05/
0d,0e,0a,00,0e,0d,00,00,Oe,0d,OO,05,0
d,Oe,0a,Oe,0a,85,8d,0d,00,00,0e
2350 DATA 34,34,b7,34,7b,7b,4b,34,43,
43,43,4b,51,5b,43,a2,51,43,4b,80,00,4
b,a2,00,00,51,00,00,00,80,00,80
2368 DATA 00,40,80,00,00,40,80,08,80,
c8,80,08,80,c8,88,08,40,6a,6a,88,48,9
0,c8,88,d5,d5,d5,48,cc,cc,cc,cc
2378 DATA 00,88,00,60,00,80,00,68,86,
66,68,68,88,88,86,88,86,88,88,86,88,6
0,88,88,86,88,88,66,88,88,86,68
2380 DATA 22,11,00,22,11,11,11,66,00,
33,22,00,33,33,33,22,00,33,22,00,11,1
1,11,00,22,11,00,22,80,08,00,00
2390 RESTORE 2410
2488 no»33996iF0R 4=1 TO 13ìF0R g>8 T
0 52ino«no+4iREAD niPOKE no,n\64:P0KE
no+l,(n AND 63)\16iP0KE no+2,(n AND

15)\4iP0KE no+3,n AND 3tNEXT gmo«no-
3: NEH 4
2418 DATA 178,178,171,127,255,252,255
,255,254,255,248,212,3,255,95,255,252
,63,255,255,42,63,255,63,255,255,255,
255,255,246,42,175,255,255,252,3,255,
255,255,255,255,255,85,255,253,255,25
5,247,254,168,6,8,8
2428 DATA 42,128,3,176,255,255,255,25
5,255,255,255,149,127,2,255,255,251,2
55,255,229,92,15,191,255,254,255,255,
249,87,255,239,255,255,191,248,2,255,

255,251,255,255,239,3,255,191,255,254
,255,255,245,95,85,86
2430 DATA 170,250,170,255,255,235,255
,255,160,0,14,191,255,250,3,255,235,2
52,0,175,255,254,191,255,250,0,0,235,
255,255,175,255,254,191,15,250,243,20
7,235,31,79,175,125,254,191,247,250,2
55,223,234,170,170,168
2440 DATA 128,0,2,255,255,248,255,243
,239,51,255,188,243,254,213,85,91,255
,255,239,255,255,181,85,94,223,255,12
3,127,253,236,255,243,188,255,62,252,
243,251,255,255,237,255,247,191,125,2
54,255,255,250,178,170,186
2450 DATA 170,170,171,255,255,239,255
,255,144,16,18,127,127,121,253,253,23
1,119,247,157,207,206,119,247,249,223
,223,224,0,7,191,255,222,0,8,59,255,2
55,239,255,255,191,255,254,8,0,251,25
5,255,234,178,178,186
2468 DATA 178,178,171,253,85,95,248,8
,47,255,255,179,255,254,252,8,27,255,
255,99,255,253,191,64,2,253,255,251,5
5,255,239,16,16,191,63,62,63,255,251,
255,127,111,192,8,191,255,246,255,255
,216,8,48,53
2478 DATA 85,87,87,255,255,287,255,25
5,63,255,252,254,171,243,248,15,287,2
07,63,63,68,252,255,255,243,287,255,2
87,254,255,48,8,252,255,255,243,243,2
55,287,255,255,63,63,252,255,255,242,
178,170,128,8,8,48
2488 DATA 0,8,3,255,255,255,255,255,2
34,175,254,255,255,247,255,255,245,95
,255,228,255,254,252,255,247,252,255,
252,252,255,248,252,256,112,252,195,2
55,255,15,255,188,63,236,8,255,48,8,2
36,192,8,8,8,48
2498 DATA 0,8,8,255,255,243,255,255,2
07,252,0,63,243,252,255,207,243,253,8
5,79,255,255,63,255,252,255,178,163,2
55,255,287,255,255,63,213,84,255,255,
243,235,255,207,3,59,48,0,12,0,8,0,8,
8,63
2506 DATA 255,255,51,255,252,206,174,
171,48,48,12,192,246,49,3,192,192,7,3
,8,68,12,85,245,115,255,252,267,255,3
,8,8,252,255,255,243,255,254,282,162,
135,63,95,252,255,255,243,191,238,192
,15,8,48
2518 DATA 255,63,255,252,255,252,3,8,
51,255,255,267,255,255,255,255,255,24
5,87,255,255,255,87,255,255,255,255,2
55,255,255,255,255,191,255,251,191,25
5,188,255,251,254,245,79,243,255,255,
243,255,255,197,85,85,127
2528 DATA 255,255,253,95,253,95,192,1
5,255,247,255,252,8,255,251,123,255,2

48 Computing With The Amstrad - December 1986

firne ^¿¿eTfawtit

53,255,255,255,255,252,8,255,255,255,
255,253,255,213,127,255,255,247,127,2
55,93,255,253,117,255,196,215,247,287
,79,95,253,212,48,195,63
2538 DATA 255,255,255,235,235,255,255
,255,255,248,8,127,255,254,127,255,25
5,124,63,253,255,255,189,255,254,247,
195,251,7,255,239,223,248,191,223,254
,223,127,258,173,255,239,243,255,191,
255,254,223,255,288,8,8,8
2548 DIM ene(234)¡RESTORE 2558:FOR f=
1 TO 234:READ ene(fhNEXT 4
2558 DATA 11,4,8,1,2,11,3,6,8,1,4,12,
14,4,1,3,14,19,4,8,2,1,4,12,8,8,1,2,6
,12,18,8,2,1,4,12,6,5,1,1,3,18,18,5,1
,2,3,18,8,8,8,8,8,8,18,3,8,3,5,19,18,
12,8,4,8,19,16,5,1,1,4,9,18,11,2,4,6,
19,8,3,8,8,8,8,8,8,8,8,8,8,5,5,1,3,3,
12,19,3,8,1,3,18,8,8,8,8,8,8
2568 DATA 7,3,8,3,3,12,18,18,8,1,2,11
,8,8,0,8,8,8,4,5,2,1,2,12,6,9,2,2,2,1
8,18,18,2,3,3,15,3,5,8,1,3,18,9,5,8,2
,3,12,12,5,6,1,3,18,2,5,2,2,2,9,11,4,
1,1,2,9,18,11,2,3,2,19,18,5,6,1,5,11,
19,5,1,1,5,11,7,7,2,1,2,12,9,7,2,1,3,
11,11,7,2,2,2,12,6,8,0,8,8,8
2578 DATA 18,5,8,1,5,12,19,5,1,1,5,12

4 2 2 1 2 1225m'rEST0RE 2598iDlM *nl(15),loc(15,
4),nal(8),hs(8),xl(3),x2(3),dir(3),gr
a(3),ll(3),hl(3),jl(3),il(3):F0R f»l
TO 15:READ snl(f):NEXT
2598 DATA Haggles Pit,The Slobby,Bods
Hobble,The Sewer,Confused???,Hello H

orld,Low down,The Pits,The Thrips,Bia
b1 eBoa,The Egg1oo,Ht.Chapaan,Santa's
Hut
2688 RESTORE 2610iFOR f=l TO 15:F0R g
»1 TO 4:READ loclf,g):NEXT g,f
2618 DATA 8,8,5,2,8,3,1,4,2,6,8,6,8,8
,2,8,0,8,6,1,0,7,18,5,6,0,0,8,8,8,7,9
,0,8,8,0,11,3,8,6,12,10,0,13,0,11,8,0
0 0 110262b’fOR f=l TO 8:nal(f)='BI6 SCORES*

:hs(f)=3586-(480*f)sNEXT
2638 te=B.6io*l
2648 RETURN
2656 RESTORE 2866
2666 READ p,d:!F p-999 THEN RESTORE 2
866:BOTO 2668
2676 60SUB 2776
2686 SOUND l,pn,d*0.5,15,l
2698 p=188:60SUB 2778
2768 SOUND l,pn,5,15,l
2718 NHILE INKEYIO’*:NEND
2728 IF INKEY(47)08 THEN 2666
2738 RESTORE 2868:FOR f«l TO 28:READ
g,fI: POKE 33999+((g-1)»289)+f1,4:NEXT

f
2748 POKE 34857,2:P0KE 34868,2:P0KE 3
6297,2
2758 LOCATE 1,1:PRINT STRIN6I(26,11)
2760 RETURN
2778 fr«446»(2*(8+((p-10)/12)))
2788 pn=ROUND(125000/fr)
2798 RETURN
2886 DATA 5,46,5,46,12,48,12,46,18,48
,8,46,7,48,5,48,3,46,5,48
2816 DATA 7,40,8,40,10,40,12,86,5,46,
5,48,12,40,12,40,18,48,8,48,7,48,5,48
,3,48,5,40,7,48,8,48,10,48
2828 DATA 12,88,12,48,13,48,18,48,12,
40,13,48,15,48,17,48,12,40,10,48
2838 DATA 8,40,5,48,7,40,8,40,18,88,8
,48,18,48,12,86,13,40,12,48,12,48,18,
48,8,48,7,48,5,88,8,28,7,28,5,40
2848 DATA 18,88,8,46,18,40,12,48,13,4
8,15,48,17,48,12,48,10,48,8,48,7,48,5
,88
2850 DATA 999,999
2860 DATA 1,59,1,110,2,68,2,90,3,148,
4,104,4,187,5,101,6,76,6,105,7,71,7,7
2,8,157,8,158,8,151,9,52,9,165,9,154,
18,166,11,178,11,140,12,33,12,23,12,6

’8,12,62,13,9,13,67,13,68
2878 REH»»»»»«»»*High Score»»»»»»»··
2886 NODE 1
2896 LOCATE 4,5:PEN 3:PRINT CHRK158)
¡STRIN6l(32,CHRI(154))jCHRI(156)
2968 LOCATE 16,3:PEN 2:PRINT*HI6H SCO
RE*¡PEN 3
2918 FOR f«6 TO 15:L0CATE 4,f:PRINT C
HR»(149)¡LOCATE 37,fîPRINT CHRK149):
NEXT
2928 LOCATE 4,16:PRINT CHRK147)¡STRI
N6I(32,CHRI(154))}CHRI(153)
2938 FOR f=l TO 8
2940 IF score>hs(f) THEN 60SUB 3030:f
-10
2950 NEXT
2960 FOR f»l TO BiPEN 1:LOCATE B,f+6:
PRINT nal(fI¡LOCATE 18,f+6:PEN 3:PRIN
T*. '¡hs(f):NEXT
2970 LOCATE 1,17:PRINT STRING#(220,"
*)
2980 IF INKEYIO** THEN BOTO 2980
2990 PEN 2:L0CATE 1,20:PRINT STRINSI!
48,CHRI(154)I¡LOCATE l,22tPRINT STRIN
84(40,CHRIH54)):PEN 1
3000 LOCATE 1,23:PRINT STRINSI(40,* *
)
3010 LOCATE 11,21:PEN 3:PRINT*PRESS*|
¡PEN 1:PRINT*< SPACE >*;:PEN 3:PRINT*
TO PLAY.*¡PEN 1
3020 80SUB 2650!SOTO 40
3030 al»*ABCDEF6HHKLHN0P0RSTUVNXYZ .

inO!<}?«+*+CHRI(233)
3840 c=19:L0CATE l,20iPEN 1:PRINT al
3050 LOCATE 3,17:PEN hPRINPUSE CURS
OR KEY'S LEFT,RI6HT AND COPY’sLOCATE
4,18:PRINT'TO SELECT LETTERS.(NAXINUH

OF 18.1'iPEN 2:L0CATE 1,19SPRINT STR
IN6I(40,CHRI(154)): LOCATE 1,22:PRINT
STRINSI (48,CHRK1541)
3860 LOCATE 12,23:PEN 3sPRINT*PRESS*j
:PEN 1:PRINT'< 'X' >'|:PEN 3:PRINT'T0
EXIT.'.-PEN 1

3070 xl»*'
3080 FOR 2=1 TO 10
3090 LOCATE c,21¡PEN 2:PRINT* *
3100 IF INKEY(1)=8 AND c<40 THEN c»c+

•1
3110 IF INKEY(8)=8 AND c>l THEN c»c-l
3120 IF INKEY(9)«0 AND c=4B THEN LOCA
TE 7,f+6¡PRINT· '¡z=100i8OT
0 3170
3130 IF INKEY(63)=B THEN z«ll:60T0 31
70
3140 IF INKEY(9)<>0 THEN LOCATE c,21:
PRINT*»*:FOR a=l TO 50:NEXT:6OTO 3090
3150 xl»xl+HlDI(al,c,I)¡LOCATE 7+z,f+
6:PEN hPRINT HIDI(al,c,l)
3160 FOR a=l TO 200:NEXT
3170 NEXT
3180 IF 2=101 THEN SOTO 3078
3198 hs(8)=score:nal(8)=xl
3288 f=8
3218 FOR z=l TO 7
3220 IF hs(z)<hs(z+l) THEN t»hs(2+l):
hs(z+l)=hs(z):hs(2)=t>al=nal(z+l):nal
(z+l)=nal(2)!nal(z)=al:f=l
3230 NEXT
3240 IF f=l THEN SOTO 3200
3250 fr=FRE<**)
3266 RETURN
30608 NODE 1
38881 INK 1,24:PAPER BiPEN SPRINT 'E
rror...*;ERR5*afline'jERL
30882 END

All the listings from this month's
issue are available on cassette.

See Order Form on Page 61

Computing With The Amstrad - December 1986 49

PASCAL arose from in
vestigations into possible
---------developments resulting

from the inclusion, of data
structuring facilities in an
ALGOL-60 like language.

It was designed around 1970
mainly by Professor Niklaus Wirth
working at the Institute for Infor
matics in Zurich, but also benefited
by the inclusion of some of the ideas
of C.A.R. Hoare who was also
working on data structuring
facilities in programming languages.

He published his language in
1971 and named it after the great
seventeenth century French
philosopher Blaise Pascal, who
invented one of the earliest known
calculators^

Two years later, in 1973, Hoare

and Wirth attempted a formal
definition of the language in
response to user experience to shed
light on areas of uncertainty. This
led to a revision and extension of the
original language.

As with all computer languages,
Pascal was designed for a specific
purpose. Niklaus Wirth's main
objective was to produce a language
better suited to teaching program
ming than any existing language at
the time. He was successful in his
aims and it soon became popular as
a teaching language.

Very quickly user groups sprang
up in several countries to exchange
information and ideas on Pascal and
the language was adopted by the
University of California, San Diego
in 1973/4 as their main teaching

and practice: Hi
THERE are two Amstrad versions
of Hisoft Pascal, 4D and 4T. The
first is a special version for disc
owners which runs under CP/M,
the second an ordinary version
available on tape or disc that does
not require CP/M.

The two implementations of the
language are identical, the only
differences are the editor, and storage
of the source and object files. Perhaps
I ought to make it clearthat my own
preference is for the CP/M version.

There are a total of 10 files on the
CP/M Pascal disc. The two main
utilities are HP80 the compiler, and
ED80 a text editor.

The Pascal source text is written
using ED80. This text editor is far
superior to some word processors
I've seen and could quite easily be
used as such. The only missing
functions are word wrap and justifi
cation, which in any case would be
undesirable for writing programs.

The cursor can be moved through
out the text one character, word, line
or screen at a time. Text can be
entered in insert or overwrite mode
and deleted one character, word or
line at a time.

Markers can be placed around text

to define a block. This can then be
moved, copied, deleted, read from or
written to disc. There's quite a
powerful find and replace function
which also allows the use of
wildcards.

Where ever possible the functions
are obtained by using the same
keystrokes as within Wordstar. This

By ROLAND WADDILOVE

means, for instance, that to move the
cursor right you press Ctrl+D, left is
Ctrl+S and quit is Ctrl+K.

Frankly the keys selected are
appalling. Not to worry though,
there's a file on the disc which
enables you to alter almost every
function of ED80 to your own
personal taste. This is menu driven
and very easy to operate.

The first thing most people will do
is move those awful Wordstar cursor
keys to their usual place on the
Amstrad keyboard.

Having entered the Pascal source
text and saved it to disc it can be
compiled with HP80. This takes the
source text from a .PAS file and

places the object code in a .COM file.
Several options can be set

affecting compilation. Listing can be
enabled or disabled and sent to
screen or printer. Error checking can
be turned off or on and mathematical
functions are reals, or just integers,
selected.

A standard CP/M .COM file is

produced and, as with all transient
commands, it is executed by typing its
name.

I'm a complete novice when it
comes to CP/M, so being able to write
CP/M utilities in Pascal is a great
advantage. I can now type CLS to
clear the screen, PEN 3, PAPER 4 and
so on. I'm sure a CP/M expert would
never do this, but it works for me!

There are two manuals for CP/M
Pascal, one describing the editor and
the other the compiler. Neither will
teach you Pascal, but they do contain
all the experienced programmer
needs to know to use this particular
implementation.

The Pascal itself is pretty standard

50 Computing With The Amstrad - December 1986

language. UCSD were responsible
for implementing Pascal for a wide
range of computers.

One of the main reasons for
Pascal catching on so quickly is that
it is concise - the rules of grammar
can be written down on just four or
five pages.

Pascal is fairly simple to learn
although complete beginners may
have trouble initially as the know
ledge required to write your first
program is greater than for Basic.

Pascal is a highly structured
language with a rigid format that the
programmer is required to adhere
to. Everything is laid out so neatly
and logically that it is difficult to go
wrong.

It encourages a style of program
ming in which programs are built up

step by step from small well defined
procedures.

All programs start with the word
'program' followed by the name of
the program. All the constants and
variables used must be declared
after the title, plus their type - for
example, integer.

Any procedures used are defined
following the variables and const
ants and the action part of the
program commences with 'begin'
and finishes with 'end'.

Pascal programs are very read
able, being almost self documenting
and needing very few comments.
The program flow is easy to follow
and the structure clear, making
alterations, improvements and
debugging very simple.

Lisp is quite interesting, Forth is

fast and powerful, Basic just a
Mickey Mouse toy for kids - but
Pascal is a real programmer's
language and a delight to use.

Pascal is a compiled language,
not an interpreted one like Basic
which means that Pascal programs
run many times faster than their
Basic equivalents.

There are two popular ways of
implementing Pascal, each with its
own advantages.

Either the text of the source
program can be compiled to pure
machine code - which makes it very
fast but specific to that machine -or
it can be compiled to P-Code which
is then interpreted when run, not
unlike Forth.

This is slower but more easily
transferred to other machines.

and virtually identical to ISO-Pascal
on the BBC Micro and Electron. I
borrowed a Pascal book from the
editor of Apple User and tried a few
examples - they all ran perfectly, and
somewhat faster than the Apple II, I
might add. So there are plenty of
books and tutorial guides the novice
can turn to even though none are
specifically for the Amstrad.

Pascal 4T, tape or disc, differs in
the way it operates, though the
implementation of the language is
identical.

The whole of the compiler, runtime
routines and editor are loaded and are
resident in memory at the same time.
This leaves around 20k for both your
source text and object code, which
are both present at the same time.
Compare this with around 30k for
source and 30k for object code under
CP/M.

The source text is entered in the
same way as Basic with line numbers.
Editing is with the cursor and Copy
keys.

In addition to the normal Basic
editor several other functions are
available from a menu, including
search and replace and a separate
line editor. Text may be inserted,

deleted, overwritten, deleted or
abandoned, and can be saved to disc
or tape.

The text can be compiled and the
object code run or saved. The saved
code can be run without the compiler
being present, which means you can
write your machine code routines in a
high level language.

The advantages of these imple
mentations are legion. Why use a
Basic compiler when you can write in
a high level language like Pascal? The
Pascal compiler can cope with real
numbers, arrays, SIN, COS, TAN,
LOG and many more. Can any Basic
compiler?

And if you want speed and haven't
the time or the knowledge to write in
machine code, then use Pascal.

As with the CP/M version, the
manual is simply a reference guide for
the Pascal programmer and not a
tutorial, though there are several
examples to type in.

A number of additional functions
have been included in both versions
of Pascal. PEEK and POKE are
obvious, INLINE places Z80 machine
code in the memory at the current
compiler address, USER calls a
machine code routine and NEW
reserves space for a variable.

A turtle graphics package written
in Pascal has been included with
Pascal 4T. This, combined with

Pascal's structure and wide range of
commands, produces a powerful
language for drawing quite complex
patterns.

Being a compiled language, Pascal
tends to be faster than Basic. In a test
which simply involved counting from
0 to 30,000 Basic took 33 seconds
whereas CP/M Pascal took only 20 -
quite a significant increase in speed.

Forcing Basic to use an integer for
the loop counter brings the time
down to 13 seconds. By setting some
compiler options, error checking
within the Pascal program can be
turned off and the program forced to
use integers only. Pascal then took
only 1 second - 13 times faster than
Basic.

This won't always be the case, as it
depends on what you are doing, but
some speed increase is always
assured.

There are a few restrictions with
Hisoft Pascal. Neither version will
allow procedures or functions as
parameters, and a record type may
not have a variant part. CP/M Pascal
allows files of CHAR only, whereas 4T
does not allow files, although
variables may be stored on tape.

Pascal is a structured program
mers language. I love it and would be
quite happy to throw away Basic.
Hisoft’s versions are excellent, and I
can thoroughly recommend them.

Computing With The Amstrad - December 1986 51

NE of the nice things
about listings in Comput-

\ing with the Amstrad is
the generous use of REM state
ments. These are an invaluable
aid t^ the programmer.

Unfortunately as far as the
Amstrad itself is concerned they are a
waste of time and space. In fact a
REM takes longer to be ignored than
it takes a GOTO to be executed.

If you want to prove it you'll be
glad to know that you can time any
command using Program I by
inserting the command in line 40 and
running it. The time given will be for a
single execution of the command.

What is really required is a method
of removing REMs after a program
has been typed in and fully debugged.
Unfortunately it is almost impossible
to use Basic for this task as the
program would be modifying itself.
The results of doing this are
unpredictable and potentially disas
trous.

So to have an independent
program in memory and in the
interests of speed we have to resort to
machine code.

To discover how best to write REM
Stripper I looked at the tokens used
by Basic to store commands after
they have been typed into a program.
For further information on tokens I
would recommend John Hughes’
article published in the November and
December 1985 issues of Computing
with the Amstrad. Briefly though,
Basic translates each command in
the program into a single byte code.

A large part of a Basic program's
work is jumping from line to line by
means of such commands as GOTO,
GOSUB and RUN. In most computers
when you type a command with a line

Figure !: Usual format for other computers

Token Line number
hh hh hh

Figure ii: Amstrad CPC format

Token Space Address type Address
AO 20 1E or 1D hh hh

Figure III: Line 10 before execution

Line Line GOTO Print Address Line Line end
number length token space type number marker
OA 00 OA 00 AO 20 1E 14 00 00

Figure IV: Line 10 after execution

Line Line GOTO Print Address Memory Une end
number length token space type address marker
OA 00 OA 00 AO 20 1D 79 01 00

S^
DUDLEY BROOKE shows howto
strip out those space-grabbing RE Ms
after they have done their job

number, for example GOTO 20, the
computer will store this as a token
and the two bytes following will be
the line number, as shown in Figure I.

When the program is running the
interpreter finds the GOTO token and
then picks up the line number which
follows it. It then has to start at the
bottom of the program and work up
until it finds the relevent line.

This is very inefficient. Tutorials
written for other computers recom
mend that the most used parts of the
program are placed at the beginning
and DATA statements, instructions
and the such like are at the end. This
type of structure is frequently seen on
the CPC range of computers, but it is
unnecessary and can even slow a
program down when DATA state
ments are used frequently.

Looking at Figure II you will see
that your Amstrad stores jumps in
four bytes instead of three and this
makes a significant difference. The
&20 byte merely tells the interpreter
to insert a space when listing - this is
not really part of the instruction and
may be disregarded.

Look at Program II and then
compare this with the representation
of line 10 in memory- Figure III. Note
the extra byte (&1E) between the
GOTO token and the line number
which is the form of the command
prior to running the program.

In Figure IV we see the command
after it has been run - the extra byte

has changed to &1D and the
destination has changed to &0179.
This number is the memory address
of line 20 and the advantage of this is
that the interpreter can now jump
directly to the destination of the jump.
Amazingly the GOTO in this form will
now execute more quickly than a
REM statement.

Some line dependent commands
do not take advantage of this system,
for example RESTORE. To allow you
to investigate this further type in
Program III and save it. It displays the
bytes that make up line 10, the first
line of the program. You can alter this
as you wish.

464 owners might be alarmed at
the DEC$ command. This is available
but you must use an extra opening
bracket, for example DEC$((n,"##'')
in line 110. It operates perfectly
otherwise and makes formatting
numbers very easy. To make the
program easier to use I have
redefined some keys on the keypad:

Key 0 executes a RUN so that line
10 is run.

Key 1 executes a RUN 60 so
missing out the lines before.

Key 2 gives you a blank line 10 to
fill as you wish.

Key 3 allows you to edit line 10.
When run you will see at the top of

the screen the words Line Specifier
and underneath some numbers. The
numbers in red are the addresses in
memory, those in light blue are the
values at that address in hex and in
decimal.

Finally there are some symbols
corresponding to character values.
Beneath these four bytes there is the
word Tokens and more output in the
same format - these numbers are the
tokens and data used by the
interpreter.

This aspect of Basic's operation
contributes greatly to its speed but it
is not the entire story.

It is a fairly simple matter to

52 Computing With The Amstrad - December 1986

^iMtrStncfi^

identify and remove a REM or ' and
then move the rest of the program
down in memory to fill the gap.
However it's not as simple as that
because the REM might be the target
of a line dependent command such as
GOTO 90, RUN 50 or RESTORE 300.
These then must be retargeted to
point to the next non-REM line.

Program IV will eliminate all REM
and ' statements and redirect all
relevant commands with the excep
tion of Delete as it seems pointless to
retarget this if a line is already
deleted.

It takes approximately 30 seconds
for Rem Stripper to deREM a 10k
program, depending on the number of
REMs present. It is stored starting at
location 30000 in memory and is 403
bytes long, including workspace. This
should give ample space below for
any Basic program and give plenty of
room above for extension ROMs and
RSXs.

To use Rem Stripper type in
Program IV and run it. If you have
incorrectly entered any of the data the
program will inform you at which line
this occurred and stop. Once the
listing is correct you will be given the
option to save or continue.

If you choose the save option it will
save a loader program followed by
the machine code as a binary file. The
program will then return to the
options. If you select the continue
option the full stop on the key pad will
be redefined to call the machine code
when pressed, stripping all REMs.

My advice when using the
program is to keep a master copy of
the subject program containing the
REMs in case any problems occur or
you wish to go back and modify it at a
later date. You'll find the original
REMs invaluable.

18 REN *♦ Coiund Titer ♦♦
28 tia*T!NE
38 FOR a» I TO 1888
48 REN ♦♦ Put coenand her· ♦»
58 NEH
68 tin«((TINE-tia)/3B6-l.891/1888
78 PRINT "Tine to execute » ";SPRINT
USINO *t.l»llt';tie;¡PRINT * secs*

Program I: Command timer

18 SOTO 28
28 PRINT "Hello!'

Program II: Example program

18 REN t Firet line
28 KEY 6,'run'+CHR8(l3)
38 KEY 1,'run il'«(13l
48 KEY 2,"18 '+CHR4U31
58 KEY 3,'edit IB’+CHR*(13)
68 NODE 1!ZONE 28:z>8
70 FOR n«k!76 TO U78+PEEK(kl78)+256«
(PEEK(kl71))-l
88 IF z=8 THEN PRINTiPRINT TAB(12) *L
INE SPECIFIER" ELSE IF z«4 THEN PRINT

Program III: Line peeker

18 REN Ren Stripper
26 REN
38 REN By Dudley Brooke
48 REN (c) Coeputing with the Aastrad
56 REN
66 NODE liNENORY 29999
78 lin«238
86 FOR addr>38068 TO 38488 STEP 8
98 FOR a-8 TO 7
188 READ codeticode»VAL("V+code*Hch
eck«check+code
118 POKE addr+a,code
128 NEXT
136 READ chksunlichksun»VAL('k'+chksu
nt)
146 IF chktunOcheck THEN PRINT CHR#(
17)jCHR4(12l"Error in line'liniEND
156 PRINT CHRKID'Line'lin'is correc
f
168 lin»lin+18tcheck«8
178 NEXT
186 PRINT CHR#(il)"No Coment is noe
coded'iPRINTiPRINT 'Press { S) to sa
ve or { R } to continue"
196 a$»UPPER#(INKEY#) ; IF it«" THEN 1
98
266 IF U«'B" THEN SAVE 'renkill'iSAV
E 'reecode',b,38888,418i0LSî80T0 1861
REN Repeat
218 IF al«'R' THEN KEY 16,'call 38866
"+CHRt(13)¡OLSiPRINT 'Press '.' on th
e keypad to call routine*¡END
226 SOTO 196
238 DATA FD,21,6F,ei,FD,23,21,B,2CF
24B DATA 8,22,C6,76,FD,22,B9,76,3A6
25B DATA FD,4E,2,FD,46,3,ED,43,3C3
266 DATA BB,76,FD,4E,8,FD,46,l,3C8
276 DATA ED,43,BD,76,78,B1,C8,FD,551
286 DATA 7E,4,FE,l,28,6,FE,C5,372
296 DATA 28,53,1B,B,FD,7E,5,FE,31C
366 DATA C8,28,4A,FE,C5,28,46,FD,468
316 DATA 23,FD,23,FD,23,FD,23,B,38E

Program IV: Basic version

¡PRINT TAB(12) 'CONNAND TOKENS'
98 PRINT TAB(ll);
180 PEN 3îPRINT TiHE»lnl|
118 PEN 2iPRINT ' k'|HEXI(PEEK(n),2)|
STRIN8l(3,32)|DECI(PEEK(n),'·♦»·))
128 PEN liPRINT ' 'CHR»(l)|CHR*(PEEK(
n))
138 z=z+l
148 NEXT

326 DATA B,B,B,FD,23,B,7B,B1,275
338 DATA 28,BA,FD,7E,6,FE,1,26,37C
346 DATA F2,FD,7E,1,FE,C6,28,6,45A
356 DATA FE,C5,2B,2,18,E5,2A,BD,3D1
366 DATA 76,2B,22,BD,76,B7,ED,42,3DC
376 DATA EB,13,13,2A,89,76,73,23,368
388 DATA 72,B,FD,E5,3E,FF,32,C2,498
398 DATA 76,FD,23,18,6,FD,E3,AF,445
488 DATA 32,C2,76,D1,AF,32,BF,76,451
418 DATA 2A,B9,76,ED,4B,BD,76,9,3CD
428 DATA E5,B7,ED,52,22,08,76,El,514
438 DATA 7E,12,23,13,B7,2B,6,AF,25A
448 DATA 32,BF,76,18,F3,3A,BF,76,3E1
456 DATA FE,4,28,6,3C,32,BF,76,2D3
468 DATA 1B,E6,CD,F8,75,C3,3C,75,4A4
478 DATA DD,21,6F,81,DD,23,DD,4E,399
486 DATA I,DD,46,1,78,B1,C8,DD,3F2
496 DATA 23,DD,23,DD,23,DD,23,B,32E
566 DATA B,B,B,16,8,DD,7E,6,192
516 DATA CD,22,76,CC,4D,76,CC,75,435
526 DATA 76,D0,23,B,78,Bl,28,D6,3A8
538 DATA 18,EB,FE,A8,C8,FE,9F,C8,5CE
548 DATA FE,EB,C8,FE,C8,C8,FE,0A,787
558 DATA C8,FE,C7,C8,FE,C6,C8,FE,6DF
566 DATA 96,C8,FE,A7,C8,FE,97,C8,628
578 DATA FE,81,C8,FE,2D,28,3,FE,49B
586 DATA 2C,C6,16,6,C9,DD,E5,E1,46E
598 DATA 7A,B7,2B,14,2B,7E,FE,28,334
668 DATA 28,9,FE,1,28,5,FE,2C,287
618 DATA 28,1,C9,16,B,DD,E5,E1,3AB
626 DATA 23,7E,FE,28,28,FA,FE,1D,3FC
638 DATA CB,FE,1E,37,C9,F5,23,5E,45A
646 DATA 23,56,2B,F1,38,19,E5,2A,2F5
658 DATA B9,76,B7,ED,52,Ei,D8,E5,5BB
666 DATA EB,£0,58,08,76,87,ED,52,55F
678 DATA EB,El,73,23,72,23,09,E5,4A5
688 DATA 3A,C2,76,B7,28,17,2A,BB,345
698 DATA 76,7A,80,26,18,78,80,28,334
766 DATA C,El,F0,7E,2,77,23,FD,4ll
718 DATA 7E,3,77,23,09,El,23,23,388
726 DATA 09,88,47,8,8,6,8,6,108
736 DATA 6,8,8,8,6,6,6,8,6

Computing With The Amstrad - December 1986 53

ITHINK the question I get
asked most often by micro

_____ (enthusiasts is: "What exactly
is machine code? / just can't make
sense of all this LD (HL),nn andJP NZ
business. I bought a book, but that
didn't help".

Well this series of articles is an
attempt to answer that question. You
may not be an accomplished machine
code programmer at the end of it, but
you will certainly know what machine
code is, and be able to write your own
simple programs.

Better than that, you'll be in a
position to take advantage of the
many excellent books on Z80
machine code currently on the
market, and see how they fit in with
your Amstrad. From then on you'll be
able to teach yourself, and that's
always the best way.

So what IS a machine code
program?

Well, let me dodge the question by
telling you that all programs are
machine code, eventually, and we'll
get round to exactly what that means
in a minute.

First of all, tradition decrees that I
tell you that the microprocessor at the
heart of the Amstrad CPC464 is the
Z80A, complete with 8 and 16 bit
registers and a 16 bit address bus. I
should then go on to discuss its
arithmetic logical unit, its internal
data bus and so on, referring you to an
incomprehensible diagram showing
its "architecture".

To heck with all that. Let's talk
about it from the consumer's point of
view - yours. You see, I'm not one of
those "you can drive a car better if
you know what's under the bonnet"
freaks. I have it on good authority that
gynaecologists do not make the best
lovers.

So what is machine code all
about? The fact is, it's all about
numbers - lots of them. More
precisely, it's about lots of numbers,
each of which is between 0 and 255
in value.

Show me a machine code program
and I'll show you a load of such
numbers. Forget about LD and JP for
the moment. Believe me, it’s all done
by numbers.

Let me explain. We're used to
talking about a micro having memory
aren’t we. Well a micro's memory is
composed of lots of individual
memory cells, as is our own brain.

It’s all done
by numbers
MIKE BIBBY helps make sense of machine code

And, just like our memory cells, a
micro's memory cell can only
remember so much.

In the case of the Z80, the cell can
remember only one byte at a time -
and a byte, you won't be surprised to
learn, happens to be a number in the
range 0 to 255.

An upper limit of 255 might seem
a little arbitrary, but there's an
excellent reason for it. It's all to do
with the wiring. (Okay, we'll lift the
bonnet just a little I)

Each memory cell, or location as
it's more properly termed, consists of
a set of eight switches, each of which
can be either ON or OFF. Now by
arranging the switches in various
patterns of on and off, we can encode
things - a sort of electrical
semaphore. And what we code is —
yes, you've guessed it — numbers!

Have a lookatTable I. What it does
is to link each switch with a number.
We've labelled our switches switch 0,
then switch 1 and so on up to switch
7. Notice that, yet again, computers
start counting at 0. Even though we
only go up to switch 7, there are eight
switches in all.

Now below each switch in the
table is the number linked to it (don't
worry why we picked these particular
numbers for the moment). Switch 0 is

Tab/e I: Values associated with each switch

Switch 7 6 5 4 3 2 1 0
Value 128 64 32 16 8 4 2 1

gives------ >32 + 2 = 34

Switch 7 6 5 4 3 2 1 0
Value 128 64 32 16 8 4 2 1
State off off on off off off on off

Figure I: Encoding 34 with switches

worth 1, switch 1 is worth 2, switch 2
is worth 4 and so on.

Notice how the value of each
switch doubles as you go along.
Given these values we can code
numbers. For example, if switch 4
were ON, and all the others off, we'd
be "hiding" the number 1 6. Similarly,
if just switch 7 were on, we'd be
coding 128.

Even better, by having more than
one switch on at a time we can code
other numbers than just the eight
we've linked so far — we just add the
values of all the switches that are ON,
to arrive at the new number. For
instance, if switch 5 and switch 1
were on simultaneously, and all the
others were off, the number we've got
is 34. Figure I shows why.

If you think about it for a moment,
you'll see that the smallest number
we can encode is 0 (all the switches
OFF) and the largest number we can
encode is 255 (all the switches on).

The really nice thing about the way
we've chosen our numbers though, is
that every number between 0 and
255 has its own unique pattern of
switches, so there's never any
confusion about the number you've
coded, or stored - to use com
puterese - in the byte.

But, and it's a big but, writing 34 as

54 Computing With The Amstrad - December 1986

off off on off off off on off is
incredibly cumbersome. However
mathematicians decided that since
there were only two states for each
switch (ON and OFF), they'd use the
number 1 for ON and 0 for OFF. Using
1 and 0 in this way gives us what are
called binary numbers. In this scheme
of things 106 becomes %01 101010.
Figure II shows how.

You may be wondering why we've
put the % in front of the 01101010.
The reason is that otherwise we
might mistake it for an incredibly
large ordinary number. So if you see a
% in front of a number it's coded in
our binary way. Incidentally, each
switch is known as a bit, and since a
byte consists of eight such switches,
we can say that there are eight bits in
a byte. The article Bits and Bytes on
Page 38 goes into it in more detail.

Now these eight bits in a memory
byte allow us to store any number
from 0 to 255 — 256 different
numbers, if you remember to count 0.
But if we're going to have a computer
of any power we're going to need
more than 256 bytes of memory.

So what the micro does is to have
65536 different memory locations,
numbered from Oto 65535, to store
its data in. Why 65536? Well, in order
to keep track of its memory bytes, the
computer has to do some more
wiring.

We’ve already seen that having
eight wires would only allow us to
keep tabs on 256 locations. What the
Z80 does is to double up the number
of wires to 1 6 - which then gives it
65535 as its largest number. Look at
Table II if you don't believe me.

As you can see, it's like the old

Tab/e II: 16 bits explained — compare with Table I

hi bit 15 14 13 12 1 1 10 9 8
byte value 32768 16384 8192 4096 2048 1024 512 256
Io bit 7 6 5 4 3 2 1 0
byte value 128 64 32 16 8 4 2 1

Table I with an extra eight switches or
bits added on top - that is, another
byte.

To get the value of these extra bits
we just keep on doubling. 128 was
the last one, so it goes 256, 512 and
so on up to 32768. The top (higher
valued) set of eight bits is called the
high byte of the address - hi byte for
short. The bottom (lower valued) set
of eight is called the low byte of the
address - Io byte for short.

If all the switches are on -that is, if

all the bits were set at 1 - the number
these two bytes would code is:

%1111111111111111
= 32768

16384
8192
4096 I
2048 f
1024

512
256.
128
64
32
16 .

8
4
2
1.

hi byte values

Io byte values

65535

Giving------ > 64 + 32 + 8 + 2 = 106 decimal

Switch 7 6 5 4 3 2 1 0
Value 128 64 32 16 8 4 2 1
State off on on off on off on off
binary 0 1 1 0 1 0 1 0

------ >%01101010 binary

Now do you believe me? The
reason we've gone into so much
detail is because, as I've said,
machine code is all about numbers

Figure II: The binary representation of 106

stored in the micro's memory. In fact
machine code is mostly about moving
those numbers (and hence the
information encoded in them) around
the memory of the computer -that is,

Computing With The Amstrad - December 1986 55

from one memory location to another.
For example, there's a large

machine code program that actually
runs your CPC464. It's called the
operating system, orfirmware. One of
its jobs is to print that familiar
''welcome” message on the screen
when you first turn on the machine.

What happens is that the message
is stored away in the micro's memory.
When you switch on it copies the
message from those locations into
the memory reserved for the screen
so you can see it. That is, the firmware
machine code program moves the
numbers that encode the message
from one location to another.

This same sort of transfer of data
occurs when you press a key. The
firmware transfers the value of the
key pressed from the location that
remembers which key it was to the
memory set aside for the screen.

When you save a Basic program
the firmware's own machine code
program moves the contents of the
memory where the Basic program is
stored out to the cassette port.

It's all about moving bytes of data
around! More formally, most of
machine code is concerned with
moving bytes of information from one
memory location to another. If you're
a realist, you'll probably have guessed
that there's a lot more to it than that.
But have faith, most of what I'm
telling you is true.

To investigate this movement of
bytes further we need an analogy - in
other words a meaningful lie.
Suppose we have a tiny micro with
only three memory locations. Figure
III shows the sort of thing.

It's fairly easy to wire them up so
that the numbers can move from one
location to another - just join each
byte to every other byte (in the figure,

Location 0

Location 1 Location 2

Figure III: Linking three
memory locations

by the way, I’ve only shown one of the
eight wires for clarity).

If you stretch your imagination
you'll see that it looks a lot like a
simple railway.

But suppose there were more
locations, as in Figure IV. You can see
the layout's getting complicated. And
when you consider that the Z80
addresses tens of thousands of such
locations, you can see that we've got
problems - the wiring's far too
complex.

Of course the answer is to stop
giving each memory location its own
direct lines to each and every other
location. We'll do what railways do,
and have junctions and branch lines.

Figure V shows such a layout. Our
six locations are all connected via the
major junction A. Everything passes
through here. In fact there is such a
memory location as A - a major
junction through which traffic passes.
It's deep in the heart of the Z80 and
can hold one byte numbers. In
computing jargon we call such a
junction a register.

Now suppose you wanted to move

a byte of information from memory
location 0 to memory location 5. As
you can see from the figure, you
would go via register - that is,
junction — A.

You would do this by giving the
machine two instructions:

1. Load register A with the number
contained in memory location zero.
2. Load memory location 5 with
the number that is in register A.
It's a sort of microelectronic pass

the parcel. The data goes from
location 0 to A, then from A to 5. It's
always a two-stage journey. All traffic
passes through A.

In practice the actual layout is
more like Figure VI, but there's still no
direct traffic. Everything goes to A
first and then back out.

To stretch our analogy a little
further, a major rail junction like A
would have lots of facilities that other
junctions haven't. It's the same with
the Z80 - once you've got a number
in A you can do all sorts of things with
it I

Also no rail designer worth his salt
would depend on one major junction

56 Computing With The Amstrad - December 1986

Figure VI: A more realistic
representation of memory/
register linkage

- there'd be too much congestion.
He'd have other junctions. Similarly
the Z80 has registers other than A for
much the same reasons.

And as it stands our junction/
register A doesn't have all that much
capacity - just one eight bit number.
This could be limiting if we wanted to
deal with larger numbers, such as we
use to label memory locations. Well
the Z80 has got registers to handle
these, too, as we'll see later on in the
series.

By now I think I've convinced you
that machine code's all about moving
numbers around in memory. But how
does the micro know what to do?
How do you tell it to move these
numbers, and where you want them
putting?

The answer's simple - you give it a

list of numbers stored in memory!
I'm not joking, honest.
The program itself is just a

sequence of bytes in memory. The
•bytes have meaning to the Z80, you

see - it's a sort of code, machine code
in fact. All you do is point your Z80 at
the first byte and say go. It then
moves along the list of bytes doing
what it's told.

Let's have a look at what this
means in the context of the little
program we discussed above - the
one that transferred one byte from
location 0 to location 5.

The actual string of bytes we need
is:

58 0 0 50 5 0 201
I've written the numbers in

decimal, as that's what we're used to
- of course the micro reads them in
binary. Figure VII explains what it's all
about. When we point the Z80 at the
location of the first byte of our
program and tell it to go it knows that
first byte is going to tell it to do
something. The fancy name for this
sort of "command'’ byte is an opcode
- short for operation code.

Now 58 is an opcode that tells the
Z80 to load register A with the
contents of a particular location in
memory. From the opcode itself, the
Z80 knows that the address of this
memory location will be contained in
the two bytes directly following the
opcode (remember you need two
bytes to specify addresses).

So having understood the meaning
of the opcode, the Z80 moves its
attention along to these two bytes
and works out the address they refer
to (in this case, location 0). It then
copies the contents of that address
into the A register.

The Z80 has finished with the first
three bytes and has done all the first
opcode instructed it to. It now turns
its attention to the fourth byte, which
it knows must be an opcode since it
has finished its previous task.

This time the byte is 50, which tells
the micro to load the memory
location specified in the next two
bytes with the number in the A
register. (In a sense, this is the mirror
image of the last opcode. That loaded
the accumulator from a memory

Figure VII: A simple machine code program explained

Contents of
memory location 58 00 00 50 05 00 201

Meanings of
above bytes

Load A
with contents
of the address
that follows

1___________ ___________ 1 Load the
address
following with
the contents
of A register

1__________ ,_________ 1 Return
from
whence
you
came

1
These two bytes
specify the address needed
by previous opcode

1
These two bytes
specify the address
referred to by the
previous opcode

Computing With The Amstrad - December 1986 57

location. This opcode loads a memory
location from A.)

So having worked out what the
opcode contained in the fourth byte
wants it to do, the Z80 turns its
attention to the next two bytes along,
works out the address they store and
copies the A register into that
location.

Having finished that instruction,
which used the fourth, fifth and sixth
bytes, the Z80 then moves on to the
seventh and last byte to find its next
opcode.

The seventh byte contains 201,
the opcode for return —which tells the
Z80 to go back to where it was before
it started or, as the jargon has it,
called this progam.

This works in much the same way
as RETURN does in a subroutine,
causing the micro to rejoin the main
flow of the program.

Notice that you don't need any
extra bytes after this opcode to tell it
where to return to. When this routine
was called the Z80 carefully stored
where it was up to for future

reference — as does a Basic program
when it meets a GOSUB.

By the way, you may have noticed
that the two bytes specifying location
five are not 0,5 as you might expect,
but 5,0.

I don't want to go into this too
much this month. Suffice it to say that
the Z80 likes to know the Io byte of an
address before it receives the hi byte.

Let's have another look at the
machine code program we've dev
eloped. I'm going to split each
instruction - that is each opcode and
its data bytes - onto a separate line.

58 0 0
50 5 0
201

Doesn't make immediate sense,
does it? Our brain is much more adept
at making sense of words than
numbers. Have a look at the program
in a new form, that uses "words":

LD AJO) 58 0 0
LD (5),A 50 5 0
RET 201

The symbols on the lefthand side

are mnemonics. LD stands for LoaD
and RET for RETurn.

The translation is as follows:
LD AJO) LoaD the A register with

the contents of memory
location 0.

LD (5),A LoaD memory location 5
with the contents of
register A.

RET R ETurn to the program
that called the machine
code in the first place.

You can get special programs
called assemblers that let you type in
your routines in these more mean
ingful mnemonics and then translate
them into machine code, but they're a
luxury we'll be doing without for a
while.

Well that's all for now. I hope
you've got a better understanding of
what machine code is.
• Next month we'll be looking at
hexadecimal and running your own
machine code programs. Until then,
take a look at Bits and Bytes on Page
38. And practice your binary - you'll
be needing it!

Don’t miss our
Public Domain disks -
available now at

$19.95 each.

Strategy Software
P.O. Box 11
Blackmans Bay
Tasmania 7152

[002] 29 4377

58 Computing With The Amstrad - December 1986

X

COMPUTING
WITH THE AMSTRAD

PRODUCING labels with Mini
Office II is delightfully simple. All
that is required is to work
methodically through the follow
ing three stages:

Enter the name and address details
into the database, produce a mask or
layout of the label and finally set the
stationery parameters to fit the mask
to the labels.

The first of these stages needs
little explanation since the database
has been discussed previously. The
only point to note is that mask
production is governed by the field
number.

To determine the field numbers
select Database from the main menu
and place the data disc in the drive.

If a file containing names and
addresses already exists continue as
follows: Select Load/Save/Print fol
lowed by select Load data, enter
filename, select Database menu and
then Edit structure. The last step is
advisable so you can make a note on a
sheet of paper of the field numbers,
titles and field length.

If no such file has yet been
built go directly to Edit structure and
when this has been done press
Escape, select Edit data and enter the

HH HH tHHHHHHIH
HHHHWHHHHH
HHHHHHHH
HHHHHHHH
HHHHHH «HHHH«

Figure I: The result of test print

names and addresses on to the
database.

When entry is complete press
Escape, select Load/Save/Print and
then Save all records.

Now that a file exists we can move
on to producing the mask of the label
as follows - select Database menu,
select Mini Office II menu and change
to the Mini Office II disc.

Now select Label Printer, change
to the data disc, select Load file,
enter filename and select Edit format.

To design the mask pick Edit label.
At this point a window will appear on
the screen with the cursor located in

Printing labels
with Mini Office II

the top left corner of it.
Use the cursor keys to move round

the screen and when in position press
the # symbol and follow it by the
appropriate field number. If you did
not make a note of the field numbers
you can press Tab and get a summary
of the fields.

The only point to watch at this
stage is that while setting up this
mask you must ensure that you move
the cursor sufficiently far between
one field and the next to ensure that
the back end of the first of these is not
over-written by the second.

When satisfied with the design
press Escape. This takes you back to
the Edit label menu where you can
match the mask with the stationery,
and possibly your printer by entering
the parameters prompted so far.

Label stationery comes in all
different shapes and sizes, from one
to five labels across the page, five to
eight lines deep, 25 to 40 characters
across and with one to three line gaps
between them.

You may need a ruler to measure
up some of the distances in order to
be able to enter the correct values,
particularly if you wish to switch to
eight lines per inch from the default
six.

When these entries have been
completed select Label Print Menu,
choose Save format and enter
filename. You are now ready to print
off your labels.

Select Print labels. The number of
labels shown will be determined by
the number of records you input to
the database file.

Now choose Test print in order to
check that you have the paper
correctly adjusted in the printer and
that the mask and stationery par
ameters are correct. The resulting
printout is shown in Figure I. When

Mr, J B Lewis
14, Newton Nay
Boyle Lea
Fleeingshire

FL9 9ZZ

Mr. Jo Stork
c/o Europress

68, Chester Road
Hazel Brove
Stockport SK7 5NY

SA6ES0FT PLC.
Regent Centre
Sosforth

Newcastle.
NE3 3DS

COMPACT SOFTWARE
1, Ensbury Park Road
Bourneeouth

BH9 2SQ

Figure II: The final printout

satisfied with the layout select Print
labels and the labels will be produced.
The example shown in Figure II is the
one used to produce a single label
across the page.

If there was a problem with the
test print return to Edit format and
adjust accordingly or alternatively use
the Send printer codes option to fit
the database records on to the
printer. Do not forget to save the
working format again.

The only other point to make is that
I’ve assumed that you would need to
produce a format. If you already have
a working format you would load this
into the Mini Office II labelling
module immediately after the address
file has been loaded. ■

JO STORK continues his series on
making the most of Mini Office II

Computing With The Amstrad - December 1986 59

SUBSCRIPTIONS
& BACK ISSUES

AUGUST 1986 (#6008)

Our Premiere Edition and a true collectors item!
Game of The Month - Diamond Digger
Business Users got a look at Mini Office II, PCW Comms pack and lots more. You'd better hurry -
there aren't too many left!

SEPTEMBER 1986 (#6009)
Game of the Month was Ice Front. September 1986 featured no less than 22 different
and interesting articles and listings including: Hardware reviews on RS232 and an 8-bit
printer port, a Fill utility for the 464, a simple music tutor, a Windows utility to help in
key in those listings, reviews of Spreadsheets and Databases for the serious user and two
articles on Locoscript including 10 useful tips on its use.

OCTOBER 1986 (#6010)
Our October issue featured one of the best games yet featured in a magazine listing (Da Bells)
and as a bonus for 464 owners we presented a challenging Mouse game.
Two utilities were listed (Character Generator and Simple Sprites) as well as a full listing of
the Pilot language! For those into the educational side of things we gave you Letter Litter and there
was of course the first review of Amstrad's new PC to be published in Australia.

NOVEMBER 1986 (#6011)

A truly bumper 80 page edtion which featured 4 new series on CP/M, learning Basic, Sound and
Public Domain Software. A super-fast Fill utility and a screen clock made up Novembers two utilities
and there were reviews of Forth, and two disk drive options for CPC computers. Business users got
the low-down on IBM compatibles, reviews of DR Draw and Pocket Wordstar as well as another
look at one of the features of Mini Office II. PCW owners got their first game listing and Game of
the Month was Discman.

Obviously there has been lots more including regular and irregular columns on Adventures, Puzzles and our
monthly Software Survey to name but a few.

Back Issues and new subscriptions may be ordered on the fomr opposite or by 'phone using your Bankcard or
Mastercard. If you don't wish to cut your magazine please feel free to photocopy the order form or just write
us a note.

To obtain your copy of the above back issues please use the
order form opposite or call [002] 29 4377

60 Computing With The Amstrad - December 1986

ORDER FORM

SUBSCRIPTIONS

5001 MAGAZINE ONLY $40.00
5002 MAGAZINE + TAPE $80.00
5003 MAGAZINE +

QUARTERLY DISK $105.00

BOOKS

3001 AMSTRAD HANDBOOK $9.95
3002 AMSTRAD COMPUTING $17.95

BACK ISSUES
6008 CWTA PREMIERE EDITION $4.50
6009 CWTA SEPTEMBER ISSUE $4.50
6010 CWTA OCTOBER ISSUE $4.50
6011 CWTA NOVEMBER ISSUE $4.50

TAPES

7008 TAPE (8/86) DIAMOND DIG $7.50
7009 TAPE (9/86) ICE FRONT $7.50
7010 TAPE (10/86) DA BELLS $7.50
7011 TAPE(11/86) DISCMAN $7.50

SOFTWARE ON TAPE

1001 TASWORD $36.95
1002 3D MONSTER CHASE $ 9.95
1003 DRAGON'S GOLD $ 9.95
1004 ALIEN BREAK-IN $ 9.95
1005 ATOM SMASHER $ 9.95
1006 TOOLBOX $19.95
1007 FLEXIFREND $19.95
1008 GRASP $19.95
1009 CHAOS FACTOR $15.95
1010 MUSICO $17.95
1011 DRUMKIT $16.95
1012 MUSIC COMPOSER $17.95
1013 EASIDATA II $29.45
1014 EASIDATA III $41.45
1015 DATABASE/MAIL LIST $29.45
1019 POT POURRI VOL. 1 N/A
1020 POT POURRI VOL. 2 N/A

SOFTWARE ON DISK

2001 TASWORD $48.95
2009 CHAOS FACTOR $27.95
2012 MUSIC COMPOSER $29.95
2014 EASIDATA III $53.45
2015 DATABASE/MAIL LIST $41.45
2016 EASIWORD COMBO $49.95
2017 GENESIS $39.95
2018 EASY MUSIC $34.95
2019 POT POURRI VOL. 1 $19.95
2020 POT POURRI VOL. 2 $19.95

SPECIALS

4001 4 OF A KIND(TAPE) $29.95
4002 4 OF A KIND(DISK) $39.95

TITLE CAT# PRICE

TOTAL

Bankcard Mastercard Expiry 1 1 1

Signed

Name

Address

State______________________ Postcode________________

Mail orders to:

Strategy Software
P.O. BOX 11
Blackmans Bay
las. 7152 or call (002) 29 45//

Computing With The Amstrad - December 1986 61

HE classic format for
arcade adventures
 appeared in 1984 when

Ultimate unveiled Knightlore -
the first 3D one to appear in
Britain.

By now thousands of you must be
familiar with the diamond shaped 3D
view created by looking down to the
middle of each room from one of the
corners.

However there still must be loads
of you who have failed to crack the
game and, apart from a couple of
cheat pokes, I have never seen a
genuine analysis and fair solution of
this original classic.

To play the game you must have a
map (see Figure I), an understanding
of how and where the eight different
objects are scattered and the ability
to anticipate what order they must be
placed in the central cauldron.

The map gives one of the eight

A couple
of classics
ALEATOIRE advises on Knightlore,
and poses Ramanujan's problem

possible random scatters, and all you
need do to generate the other seven is
add 1 to each number and take the
result modulo 8 - that is 0 - > 1, 1 - >
2,... 6 -> 7, 7 -> 0.

The order of objects into the

- S

Easy

7

way

cauldron always starts somewhere in
the cyclic pattern 76543214271
6 5 3 and back to 7. As there are 14
objects in all knowing the first two
required means you know precisely
the order of the remaining 12 that
must be collected, and so you can
plan your itinerary accordingly.

Of course moving around is not
easy, but further analysis reveals that
many of the rooms/areas can be
ignored entirely because they are too
dangerous, too awkward or simply a
waste of time. Such rooms are
marked with an X in Figure I.

Once all this is appreciated almost
anyone who has a little expertise with
the joystick and a lot of patience can
solve the game. Note that patience is
often essential. For example, the

4

4

2 Bottle
3 Cup
4 Chalice

K£Y:
0 Extra life
1 Crystal ball

5 Boot
6 Poison
7 Diamond

S Start
X Do not enter
C Cauldron

Figure II: Cyclic order of objects
into the cauldronFigure I: Knightlore map

62 Computing With The Amstrad - December 1986

room in the top left hand corner
cannot be reached if you are a
werewolf - you must wait to
metamorphise back into Sabreman.

Incidentally some of the objects
are hidden, but you can verify their
presence because the program never
allows more than two objects to be
dropped in a room.

To actually get hidden objects
needs a little confidence as you drop
into the unknown - but given that,
plus a little practice, and you should
succeed well within the 40 day limit.
My best time is 21 days, so the game
still has some interest even after the
dust has danced and whirled around
you for the first time and you have
been told to "go forth to miremare".

Another classic puzzle was set
many years ago by the British
mathematician G.H. Hardy when
visiting a sick friend in hospital. The
friend, an Indian called Ramanujan,

was a self-taught mathematical
genius who lived and breathed
number theory - mention almost any
random number to him and he could
give it a unique property.

Hardy, attempting to make con
versation, remarked that the taxi he
had just used had the rather
uninteresting number 1729. "On the

£ With the aid of a
computer and a little
bit of analysis you
can solve it in less
than an hour ^

contrary", said Ramanujan, "it is the
smallest number that can be repre
sented as the sum of two cubes in
two different ways" - that is, 1 729 =
1 “3+12’3 = 9“3+10“3.

Hardy immediately asked what
then was the smallest number

representable as the sum of two
biquadrates - that is, numbers to the
power of four. Ramanujan replied that
he did not know the answer, though
he imagined it must be very large. A
few months later he was dead.

Can you solve Ramanujan's prob
lem? To encourage you I have
calculated that 3262811042 =
7"4+239“4 = 157“4+227“4.

However this is not the smallest
solution by a long way. The attraction
of the problem is that with the aid of a
computer and a little bit of analysis
you can solve it in less than an hour.
There is a prize for the first correct
answer, but tackling the problem is a
rewarding exercise in itself.

My advice is to study the two
cubes in two different ways first, and
then generate the 10 unique numbers
less than 100,000 that can be
expressed in this way. Having done
that you should see how to efficiently
solve the much bigger biquadrate
case. ■

Next Month....
Another great issue featuring ail the regulars with another two parts of
First Steps - our beginners introduction to Basic, Shane Kelly’s Public
Domain column and we continue our regular series on Sound, CP/M,
Machine Code and Graphics. There’s also the regular features of Ready
Reference and Analysis as well as a seven page Software Survey.

We present two utilities in Profiler to help speed up those Basic
programs and Double Height which enables you to display double
height characters on your CPC screen.

Two games are featured: Othello and Spiders Web, together with an
educational listing for the young speller and a musical interlude for
dk’Tronics light pen owners. We also continue our Forth article from
this month’s issue.

Computing With The Amstrad - December 1986 63

FOUR OF A KIND

3 D MONSTER
CHASE

$9.95 Each on cassette
$29.95 for all four on cassette

$39.95 for all four on one disk

Strategy Software
P.O. Box 11
Blackmans Bay
Tasmania 7152

	✅ Raw HQ scan : Sergio/Rafa CPCMANIACO for ACME
✅ Cleaning, restoration, layout, OCR : ACME 🌐 https://acpc.me
✅ 2024-07-11

